
Constructing All Convex Shapes Using a Modified Version of

the Traditional Chinese Tangram Puzzle

Matthew Zhang
Huron High School
Ann Arbor, MI

Abstract

It is well known that there are 13 convex tangram figures for the classical Chinese Tangram
puzzle. In this paper, the focus shifts to a different variant where it is demonstrated that there
are 11 such convex tangram figures. Furthermore, it is established that any convex tangram
figure must have all of its border vertices situated on a single lattice. A computer program
is developed to solve Diophantine equations and inequalities in order to identify candidate
polygons. Subsequently, a manual construction process is employed to validate whether each
candidate polygon qualifies as a legitimate tangram construction.

Keywords: classical Chinese tangram puzzle, tangram figures, convex, tangram variant, Diophan-
tine equations

1 Introduction

1.1 Background

The Chinese Tangram puzzle is a traditional dissection puzzle consisting of a square that is divided
into seven smaller geometric shapes, which are then reassembled to form various figures, such as
animals, people, and objects. The puzzle is renowned for its versatility in stimulating creativity
and problem-solving skills. Its origins trace back to China during the Song Dynasty (960-1279 AD),
although some sources suggest it may have originated even earlier, possibly during the Tang Dynasty
(618-907 AD) [1]. Initially known as the ”seven boards of skill” or ”seven clever pieces,” it gained
popularity in China as a recreational activity and educational tool.

The Tangram puzzle’s introduction to Western audiences is credited to a few different sources. In
the early 19th century, it was brought to Europe by trading ships, where it quickly captured the
interest of puzzle enthusiasts. It gained further exposure through publications and exhibitions,
becoming a popular pastime across Europe and North America by the mid-1800s. The puzzle’s
name, ”Tangram,” is believed to have been coined in the early 19th century, combining the words
”Tang” (referring to the Tang Dynasty) and ”gram” (from the Greek word for ”something written”
or ”drawing”). It reflects the puzzle’s presumed Chinese origins and its focus on geometric shapes.

Over time, the Tangram puzzle has remained a beloved classic, inspiring countless variations, artistic
interpretations, and educational applications worldwide. Its enduring appeal lies in its simplicity, yet
boundless potential for creativity and mental stimulation. The seven pieces of the classical Chinese
tangram puzzle are depicted in Figure 1 below.

The seven tangram pieces typically referred to as “tans”, can be described in terms the ratio of their
side lengths. Without loss of generality we can let the smallest side length of all of the pieces be
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Figure 1: A classical Chinese tangram puzzle

equal to unity. Then the seven tans have the shapes described as follows:

� 2 isosceles right triangles with leg length 1,

� 1 isosceles right triangles with leg length
√

2,

� 2 isosceles right triangles with leg length 2,

� 1 parallelogram with side lengths of 1 and
√

2 and an angle of π
4 ,

� and 1 square with side length of 1.

In [2], it has been shown that there are exactly 13 distinct convex shapes that can be formed using
all of the pieces above. Additionally, in [3] it has been proven for shapes that are not necessarily
convex that there are one triangle, six quadrilaterals, 53 pentagons, and infinitely many n-gons for
n ≥ 6 using all of the tan pieces.

1.2 Modified Tangram Puzzle

This paper explores a variation of the tangram puzzle to identify all convex shapes achievable within
this variant. The specific tangram variation under consideration is illustrated in Figure 2 below.

Similarly, let the shortest side length of all of the pieces be equal to 1. Then the pieces of the tangram
variation can be described as follows:

� 4 isosceles right triangles with leg length
√

2,

� 2 parallelograms of side lengths of 1 and
√

2 and an angle of π
4 ,

� and 1 square with a side length of
√

2.

In this paper, unless explicitly stated otherwise, all subsequent content pertains to this tangram
variation and its individual tan pieces.
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Figure 2: A modified tangram puzzle

2 Theoretical Framework

In this section, we establish theoretical foundations. Most of the definitions and theorems are similar
to those in [4], which focuses on non-convex polygons. Therefore, we adapt the statements in [4] to
suit the context of convex polygons in this paper. We start with the following definition.

Definition 2.1. A basic triangle is a 1× 1 isosceles right triangle.

Then we have the following quick observations.

Lemma 2.1. All the tan pieces can be partitioned into non-overlapping basic triangles.

Note the partition of tan pieces might not be unique, and readers are free to choose partition
patterns.

Definition 2.2. A generalized tangram is a tangram can be partitioned into non-overlapping basic
triangles.

The convex shapes we seek are always generalized tangrams.

Definition 2.3. A lattice tangram is a tangram where all of its border vertices can be placed onto
a single lattice.

The main theorem of this section is the following.

Theorem 2.1. Let T be a generalized tangram. If T is convex, then T is a lattice tangram.

We will prove this theorem through a series of lemmas and definitions below.

Lemma 2.2. Given any two basic triangles R,S of a generalized tangram, let their lattices be U, V ,
respectively. Then U, V either have the same orientation or differ by an angle of π

4 .

Proof. Note that the lattices of any two adjacent tan pieces either have the same orientation or differ
by an angle of π

4 . Since a tangram have its tan pieces touching each other, the lattices of any two
pieces of the tangram will have the same orientation or differ by an angle of π

4 .

By Lemma 2.2, all basic triangles of a generalized tangram can be partitioned into two sets P and
Q such that lattices of basic triangles in P are translations of each other, lattices of basic triangles
in Q are translations of each other, and lattices of basic triangles in Q are translations from rotation
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of lattices for basic triangles in P by π
4 . We further partition the set P into P1, P2, · · · , Pn such that

basic triangles in Pi share the same lattice where 1 < i < n, and Pi and Pj have distinct lattices if
i 6= j. We similarly partition Q into Q1, Q2, · · · , Qm. In the above, n,m are assumed to be some
whole numbers. We summarize the above observation into the following lemma.

Lemma 2.3. A generalized tangram T can be partitioned as T = (P1∪P2∪...∪Pn)∪(Q1∪Q2∪...∪Qm)
where n,m ∈ W, where P1, P2, ..., Pn, Q1, Q2, ..., Qm are subsets of basic triangles. Basic triangles
in the same subset (e.g. Pi or Qj) have the same lattice. Basic triangles of Pi1 and Pi2 have their
lattices differ by a translation where i1 6= i2. Basic triangles of Qj1 and Qj2 have their lattices differ
by a translation where j1 6= j2. Basic triangles of Pi and Qj differ by a translation after a rotation
of π

4 .

Note each Pi and Qj is potentially composed of multiple disjoint polygons.

Definition 2.4. A point v of a polygon R of Pi (or Qj) is consider a vertex if there is no circular
disc D centered at v such that D ∩R is a half-disc of D.

Definition 2.5. Boundary bd(Pi) (or bd(Qj)) is the union of the boundaries of all polygons with
vertices defined in the definition 2.4 that compose Pi (or Qj) .

Lemma 2.4. Pi1 and Pi2 (Or Qj1 and Qj2) have no vertices in common if i1 6= i2 (j1 6= j2).

Proof. Assume on the contrary, that there does exist a vertex belong to both Pi1 and Pi2 . Then, since
they are of the same orientation, the must be the same lattice. We have arrived at a contradiction.

Lemma 2.5. Pi and Qj where 1 ≤ i ≤ n, 1 ≤ j ≤ m, share at most one common vertex.

Proof. Assume on the contrary, Pi and Qj share two vertices W,X. Without loss of generality,
we can shift both coordinate systems to have the W as the origin. Then the coordinates of X in
both coordinate system have integer components. Note the coordinate system of Qj is a translation
following a rotation of π

4 from the coordinate system of Pi. The rotation leads both coordinates
X in Qj to be irrational. Hence X is NOT on the lattice of Qj after the rotation. The following
translation operation can keep W or X on the lattice of Qj but not both. This contradicts with the
assumption that W and X are lattice points of Qj .

Definition 2.6. A point J is called a joint vertex of Pi and Qj if J is a vertex of both Pi and Qj .

Definition 2.7. A joint vertex L is called a V-vertex of Pi and Qj if L ⊆ bd(T ).

Lemma 2.6. A generalized tangram T has a finite number of V-vertices.

Definition 2.8. A joint vertex K is called a T-vertex of Pi and Qj with Pi′ (or Qj′) above where
i 6= i′ (or j 6= j′) if K is on the interior of a side of Pi′ (or Qj′).

Lemma 2.7. A generalized tangram T has a finite number of T-vertices.

Definition 2.9. A directed segment
−→
YZ is called a primal segment of Pi and Qj if Y is a joint

vertex of Pi and Qj, and Z is a vertex of Pi or Qj and the segment does not contain any other
vertices of Pi or Qj in its interior.

Lemma 2.8. If
−→
YZ is a primal segment of Pi and Qj, then Z must be a T-vertex of T .

Proof. By Lemma 2.5, Z can be in one of Pi or Qj but not both. Without loss of generality, we
assume Z ∈ Pi. Then Z /∈ Qj or Z is a relative interior point of Qj . Hence Z /∈ bd(T ) since T is
convex. Since Z is in the interior of T , there must be another Pi′ or Qj′ different from Pi and Qj

having Z as a vertex. By Lemma 2.4, the other piece must be Qj′ . Hence Z is a T-vertex.
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Now, we can begin our proof for theorem 2.1.

Proof. If bd(T ) ⊆ P or bd(T ) ⊆ Q, without loss of generality, we assume bd(T ) ⊆ P . Let Pi1 , · · · , Pir
have non-empty intersection with bd(T ), and bd(T ) ⊆ Pi1 ∪· · ·∪Pir , r ∈ N. If r > 1, since bd(T ) is a
simple polygon, there exist 1 ≤ s, t ≤ r and s 6= t such that Pis and Pit has a common vertex. This
contradicts with the conclusion that Pis and Pit have no common vertex by Lemma 2.4. Hence,
r = 1 and the bd(T ) belongs to one lattice, and the proof is complete.

Otherwise, there exists a V-vertex A0 ∈ bd(T ) such that A0 is a joint vertex of Pi0 and Qj0 . Let
−−−→
A0A1 be a primal segment. By Lemma 2.8, A1 is a T-vertex of T . Without loss of generality, we

may assume Pi0 is on the left of
−−−→
A0A1, and Qj0 is on the right of

−−−→
A0A1.

Following the same procedure, we can find another primal segment
−−−→
A1A2, By Lemma 2.8, A2 is

a T-vertex of T . We can maintain that a Pi1 is on the left of
−−−→
A1A2, and a Qj1 is on the right of

−−−→
A1A2. This is because if A1 ∈ Pi0 , the arc A0, A1, A2 would turn left at A1, maintaining the fact

that Pi0 is on the left of
−−−→
A1A2, and a new Qj1 is on the right of

−−−→
A1A2; and if A1 ∈ Qj0 , the arc

A0, A1, A2 would turn right at A1, also maintaining the fact a new Pi1 is on the left of
−−−→
A1A2, and

Qj0 is on the right of
−−−→
A1A2.

We can recursively define A3, A4, ... maintaining the fact that a Pi region is to the left of the
new primal segment and a Qj region is to the right of the new primal segment. By Lemma 2.7,
the A0, A1, · · · sequence must loop back. Note A0 is not a T-vertex. There exist b, c ∈ N, b < c,
such that Ab = Ac. Without loss of generality, we can assume that b is the smallest such a natural
number.

By Lemma 2.4, the vertex Ab (and Ac) is a joint vertex of exactly one Pi piece and one Qj piece.
Hence the two primal segments coming into Ab (and Ac) must be the same. Hence Ab−1 = Ac−1.
This contradicts with the minimality of b. This contradiction proves that bd(T ) ⊆ P or bd(T ) ⊆ Q,
and the proof is complete.

3 Algorithm for Identifying Candidate Polygons

The derivation of algorithms in this section is based on [?].

Lemma 3.9. T must have an area of 8.

The lemma can be trivially verified by summing the areas of all of the pieces.

3.1 Maximum Polygon Size

All angles of a convex tangram are in the form kπ
4 , where k ∈ {1, 2, 3}. Let, n be the number of

sides of a convex tangram, and s,m, l be the number of angles of size π
4 ,

π
2 ,

3π
4 , respectively. Now,

we have the following equations. {
s + m + l = n

s + 2m + 3l = 4(n− 2)

Which is simplified to {
s + m + l = n

3s + 2m + l = 8.

Hence,
n = s + m + l ≤ 3s + 2m + l = 8.
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3.2 Side Lengths and Candidate Solutions

Since angles of a convex tangram are always in the form of π
4 ,

2π
4 or 3π

4 . The sides of the boundary
polygon always rotates from its previous side by multiple of π

4 . Hence the tangram can always be
oriented in a rectangle as illustrated in Figure 3 that follows.

Figure 3: Orientation of tangram in a rectangle

Let x, y be the length and width of the rectangle, respectively. Without loss of generality, we may
assume that x ≥ y. Let, a, b, c, d be the side lengths of the corners removed in order to produce the
original tangram shape, in the same order as the diagram above. Again, without loss of generality,
we may assume that a ≥ b, c, d.

By Theorem 2.1, any generalized tangram can be placed in a lattice. Hence a, b, c, d, x, y are all
whole numbers.

Since the corners are non-overlapping, we have the following.
a + b ≤ x

c + d ≤ x

a + d ≤ y

b + c ≤ y

By Lemma 3.9, we also have the following.
2xy − (a2 + b2 + c2 + d2) = 16
Since x, y are integers, they are less or equal to the sum of the maximum rational side lengths of

all pieces. Hence
x, y ≤ 4× 2 + 2× 1 = 10.
We can now enumerate all possible combinations of x, y, a, b, c, d using the following python code.
for x in range(1, 11) :

for y in range(1, x + 1) :
for a in range(x + 1) :

for b in range(min(a + 1, x− a + 1)) :
for c in range(min(a + 1, x + 1)) :

for d in range(min(a + 1, x− c + 1)) :
if ((a + d <= y) and (b + c <= y) and

(2 ∗ x ∗ y − (a ∗ ∗2 + b ∗ ∗2+
c ∗ ∗2 + d ∗ ∗2) == 16)) :

print((x, y, a, b, c, d))
The following are the computed results.
(3, 3, 1, 0, 0, 1), (3, 3, 1, 0, 1, 0), (3, 3, 1, 1, 0, 0),

(4, 2, 0, 0, 0, 0), (4, 3, 2, 0, 2, 0), (4, 3, 2, 2, 0, 0),
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(4, 4, 2, 2, 2, 2), (4, 4, 4, 0, 0, 0), (5, 2, 1, 1, 1, 1),
(5, 2, 2, 0, 0, 0), (5, 3, 3, 1, 2, 0), (5, 3, 3, 2, 1, 0),
(5, 5, 4, 1, 4, 1), (5, 5, 5, 0, 3, 0), (6, 2, 2, 0, 2, 0),
(6, 2, 2, 2, 0, 0), (6, 4, 4, 0, 4, 0), (8, 1, 0, 0, 0, 0),
(9, 1, 1, 0, 1, 0), (9, 1, 1, 1, 0, 0), (9, 8, 8, 0, 8, 0)

The only case we will have to ignore due to symmetry is (3, 3, 1, 1, 0, 0) which is the same as
(3, 3, 1, 0, 0, 1).

4 Identification of Valid Convex Tangrams

In this section, we go through all the candidate solutions from the previous section, and determine
which can produce valid tangrams.

Theorem 4.2. There are 11 convex tangrams that can be constructed from the tan variant in section
1.2.

The theorem is proved in the following sub-sections.

4.1 Solutions Without Valid Tangrams

The following solutions do not have valid convex tangrams.

(3, 3, 1, 0, 0, 1), (4, 2, 0, 0, 0, 0), (4, 3, 2, 0, 2, 0),
(4, 3, 2, 2, 0, 0), (5, 3, 3, 1, 2, 0), (8, 1, 0, 0, 0, 0),
(9, 1, 1, 0, 1, 0), (9, 1, 1, 1, 0, 0), (9, 8, 8, 0, 8, 0)

We prove the non-existence of tangrams for the above solutions one-by-one.

Figure 4: A tangram with side lengths (3, 3, 1, 0, 0, 1)

In order to have a length of 3 on the right, it must be composed of a parallelogram and an
isosceles right triangle. Without loss of generality, it may be placed as shown by the long dashed
lines in the diagram.

In order to produce the side length of 1 on the left, it must be composed of a single parallelogram.
Without loss of generality, it may be placed as shown by the medium dashed lines in the diagram.

There is now only one place to the square, shown by the short dashed lines in the diagram.

There is also only one way to place the remaining isosceles right triangles, shown by the dotted
dashed lines in the diagram.

We can now see that we will have one isosceles right triangle that would not be able to fit into
the shape, making this impossible to tile.
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Figure 5: A tangram with side lengths (4, 2, 0, 0, 0, 0)

Notice that the two parallelograms cannot fit next to each other on the vertical sides. Therefore,
they must be filled with the isosceles right triangles. They are shown by the long dashed lines in
the diagram.

There is now only one place the square, as shown by the medium dashed lines in the diagram.
We can now see that the two parallelograms would not be able to fit into the shape, making this

impossible to tile.

Figure 6: A tangram with side lengths (4, 3, 2, 0, 2, 0)

In order to have a length of 1 on the bottom left and top right, the parallelograms must be placed
as shown in the diagram by the long dashed longs.

In order to have a length of 2 on the bottom and the top, we must place two isosceles right
triangles as shown in the diagram by medium dashed lines.

Now, the square must be placed to be either touching the top or the bottom. Without loss of
generality, it may be placed on the top in the diagram as shown by the short dashed lines.

We can now see that the two remaining isosceles right triangles would not be able to fit into the
shape, making this impossible to tile.

Figure 7: A tangram with side lengths (4, 3, 2, 2, 0, 0)
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In order to have a length of 1 on the bottom left and bottom right, the parallelograms must be
placed as shown in the diagram by the long dashed longs.

In order to have a length of 4 on the bottom, we must place two isosceles right triangles as shown
in the diagram by medium dashed lines.

Now, the square must be placed to be either touching the top or the bottom. Without loss of
generality, it may be placed on the top in the diagram as shown by the short dashed lines.

We can now see that the two remaining isosceles right triangles would not be able to fit into the
shape, making this impossible to tile.

One can also use a similar set of arguments to prove that (5, 3, 3, 1, 2, 0) is impossible to tile,
though it requires more case work.

All of (8, 1, 0, 0, 0, 0), (9, 1, 1, 0, 1, 0), (9, 1, 1, 1, 0, 0),
(9, 8, 8, 0, 8, 0) cannot be tiled due to having width ≤ 1, which makes the square unable to be fitted
in, making all of them impossible to tile.

4.2 Valid Tangrams and Their Dissections

Eliminating all the impossible case, we arrive at the list of the ones that can produce a valid convex
tangram shape. The are 11 such shapes: (3, 3, 1, 0, 1, 0), (4, 4, 2, 2, 2, 2), (4, 4, 4, 0, 0, 0), (5, 2, 1, 1, 1, 1),
(5, 2, 2, 0, 0, 0), (5, 3, 3, 2, 1, 0), (5, 5, 4, 1, 4, 1), (5, 5, 5, 0, 3, 0), (6, 2, 2, 0, 2, 0), (6, 2, 2, 2, 0, 0), and (6, 4, 4, 0, 4, 0).
Below are specific examples of constructions (see Figures 8-18). It’s important to note that certain
convex tangrams can be constructed in multiple ways under geometric isometry. We have identified
all convex shapes achievable with this variant of the tangram puzzle, thereby concluding this article.

Figure 8: A tangram with side lengths
(3, 3, 1, 0, 1, 0)

Figure 9: A tangram with side lengths
(4, 4, 2, 2, 2, 2)

5 Future Work

In the future, we intent to replace the manual construction of tangrams in section 4 with a program
algorithm. The tangram variant pieces can be generalized to any number of simple polygons that
can be constructed from basic triangles. Lastly, we can also derive general results for non-convex
tangrams as did by Sarah Sophie Pohl and Christian Richter [3].
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Figure 10: A tangram with side lengths
(4, 4, 4, 0, 0, 0)

Figure 11: A tangram with side lengths
(5, 2, 1, 1, 1, 1)

Figure 12: A tangram with side lengths
(5, 2, 2, 0, 0, 0)

Figure 13: A tangram with side lengths
(5, 3, 3, 2, 1, 0)

Figure 14: A tangram with side lengths
(5, 5, 4, 1, 4, 1)

Figure 15: A tangram with side lengths
(5, 5, 5, 0, 3, 0)
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Figure 16: A tangram with side lengths
(6, 2, 2, 0, 2, 0)

Figure 17: A tangram with side lengths
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Figure 18: A tangram with side lengths (6, 4, 4, 0, 4, 0)
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