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Abstract

This study analyzes the dynamics of Amgen’s stock prices using statistical and stochastic
models. Change-point detection, anomaly detection, and Granger causality are applied to exam-
ine stock behavior. Time series models are used to forecast future trends. Geometric Brownian
motion and the Ornstein-Uhlenbeck process are fitted to the data. The results suggest poten-
tial Granger causality between Amgen and a competitor, underscoring the value of statistical
methods in understanding stock market behavior and offering actionable insights.
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1 Introduction

1.1 Background

In the rapidly evolving biopharmaceutical market, the complexities among stock prices of major com-
panies can provide crucial insights into market dynamics. This article explores various relationships
and models that can offer a deeper understanding of the factors driving stock market movements.
Most of the methods employed will focus on the large biotech company Amgen, a biopharmaceutical
company established on April 8th, 1980, in Thousand Oaks, California. Today, Amgen ranks among
the largest companies in the industry, competing with major players like Johnson & Johnson, Pfizer,
Moderna, Eli Lilly, and others. This paper chose to focus primarily on Amgen, while including
comparisons with other big companies such as Johnson & Johnson and Pfizer to add depth to this
research.

1.2 Literature Review

Stock represents ownership or equity in a company or corporation. The stock market, made up of
many companies, acts as a trading platform for investors. However, understanding the stock market
involves complex concepts and requires considerable expertise. Extensive research has been done to
uncover the factors that influence stock prices, providing valuable insights. For example, Straehl
and Ibbotson [1] concluded that total payouts play a crucial role in determining stock market prices
in their work on the long-term drivers of stock returns.

One sector that has seen significant growth in recent years is the pharmaceutical industry. As
one of the world’s most research-intensive industries, the pharmaceutical sector continually develops
new products that save lives and enhance the quality of life [2]. Recent shifts in the pharmaceutical
market, driven by the rising demand for drugs, have led to more attention on the industry [3].

This review focuses on modeling Amgen’s stock, as accurate stock modeling offers valuable in-
sights and practical benefits. Amgen’s stock has been the subject of previous studies using techniques
similar to those employed in this article. For instance, Sander Bos [4] used Granger causality to
analyze a collection of stocks, including Amgen’s. Similarly, Hansen [5] applied Granger causality
tests to Amgen’s stock, highlighting the importance of this method. Other research, such as that
by Olaleye [6], demonstrated how machine learning and stochastic simulation techniques could be
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effectively applied to model Amgen’s stock, leading to improvements in inventory management. Ad-
ditionally, Heckens and Guhr [7] used time series analysis on Amgen’s stock to identify long-term
financial crisis precursors, showcasing the effectiveness of advanced modeling approaches. Much of
the information about stochastic modeling was referenced from an textbook on stochastic processes
by Dr. Olga Korosteleva [8]. Additional information on time series analysis in R can be found in
Hyndman’s textbook as well [9].

1.3 Data Description

The data used in this analysis was obtained from the Yahoo Finance website yahoofinance.com. The
dataset includes daily closing stock prices for companies such as Amgen, Johnson & Johnson (J&J),
and Pfizer. The data cover a specific time period, ranging from January 1st, 2020 to July 23rd,
2024. In Figure 1 below, we present the time series plots for each company, allowing for a visual
comparison of their stock price movements over the specified duration.

Figure 1: Closing price for Amgen, J&J, and Pfizer stock

1.4 Article Outline

The article begins with anomaly detection, which identifies unusual observations in the data, followed
by change-point detection, used to find shifts in data distribution. Next, it covers Granger causality,
a method for exploring cause-and-effect relationships between time-dependent variables.

The article then discusses time series models, including the autoregressive (AR), moving average
(MA), and autoregressive moving average (ARMA) models, used for analyzing and forecasting tem-
poral data. Finally, it addresses stochastic modeling, focusing on geometric Brownian motion and
the Ornstein-Uhlenbeck process for modeling random and mean-reverting behavior in time series
data. The R code used for the analysis in this article is available on this website:

https : //github.com/greem1372/Amgen− Code/blob/master/.Rhistory

2 Methodology and Applications

2.1 Change-point Detection

2.1.1 Theoretical Foundation

Change-point detection is a machine learning method designed to identify abrupt changes in the
statistical characteristics of time series data, such as shifts in mean, variance, or both. To illustrate
how this method operates, let’s consider a straightforward example involving normally distributed
observations with a single shift in mean. Suppose we obtain a sequence of n observations, where the
first k observations follow a normal distribution with mean µ1 and variance σ2, while the remaining
observations are normally distributed with a different mean µ2 and same variance σ2. The primary
objective of change-point detection in this context is to determine the value of k at which the shift
in mean occurs. To achieve this, the method of maximum likelihood estimation is used to find the
value k, along with the estimates of µ1, µ2, and σ2.
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When the analysis requires the identification of multiple change points, the binary segmentation
method is utilized. This technique operates by first identifying a single change point, which divides
the dataset into two segments: one above the change point and one below it. After this initial split,
the method recursively applies the same change-point detection process to both segments, searching
for additional change points. The binary segmentation approach continues this recursive splitting
until a specified number of change points is detected or until no further significant changes are found
in the data.

2.1.2 Application

By using the daily closing prices of Amgen’s stock, we can conduct an analysis to identify shifts in
Amgen’s average closing price, with five change points specified. The results are displayed in Figure
2 below.

Figure 2: Change-point detection for the mean for Amgen stock

The horizontal red lines represent distinct time intervals during which Amgen’s average stock
price shifted. These six red lines correspond to five specific dates of stock price changes: April 15,
2020, March 23, 2022, August 7, 2023, December 12, 2023, and May 2, 2024.

The first notable change occurred on April 15, 2020, likely influenced by the looming impact
of COVID-19. Just a month later, in May, the U.S. entered lockdown, which brought significant
volatility and uncertainty to the market. Amgen, like many companies, experienced stock price
fluctuations due to the pandemic-driven turmoil.

On March 23, 2022, a second shift was observed, possibly tied to Amgen’s announcement on
March 2 of a 10% increase in their second-quarter dividend to $1.94 per share. Furthermore, Amgen’s
presentation at the Oppenheimer Healthcare Conference on March 10 may have attracted additional
investor interest, contributing to the stock price change.

Another change took place on August 7, 2023, shortly after Amgen released its second-quarter
financial results and announced that the FDA had approved its leukemia treatment, BLINCYTO.
These two developments likely played a role in the stock’s upward movement.

By December 12, 2023, Amgen had delivered six presentations in the preceding month and
announced an increase in their dividend to $2.25 per share, both of which may have fueled further
stock price growth.
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The final shift occurred on May 2, 2024, following Amgen’s first-quarter results, which reported
a 22% increase in sales, driven by a 25% growth in volume. This impressive performance likely
attracted more investors, pushing the stock price higher.

Next, a change-point detection was applied to identify the dates with the most significant shifts
in variance, occurring on April 15, 2020, March 23, 2022, August 7, 2023, December 12, 2023, and
May 2, 2024. These dates are similar to those described above. Figure 3 below illustrates these
points on the graph.

Figure 3: Change-point detection for the variance for Amgen stock

2.2 Anomaly Detection

2.2.1 Theoretical Foundation

Anomalies in time series data are typically identified as outliers in the residuals once linear trends and
seasonal patterns have been removed. This process begins with de-trending the data, which involves
subtracting the estimated trend component and any seasonal variations to isolate the residuals that
reflect the underlying fluctuations in the data. After this adjustment, values that fall outside the
expected range can be considered potential outliers.

In the context of the de-trended values, outliers are defined as those that lie below the lower
limit Q1−3 · IQR or above the upper limit Q3+3 · IQR, Here Q1 represents the first quartile (25th
percentile), which marks the value below which 25% of the data falls, and Q3 denotes the third
quartile (75th percentile), indicating that 75% of the data is below this value. The interquartile
range, calculated as IQR = Q3−Q1, measures the spread of the middle 50% of the data, providing
a robust statistic that is less sensitive to extreme values. The default threshold of 3·IQR is commonly
used to determine which observations are flagged as outliers. However, this threshold is not fixed.
Analysts have the flexibility to modify it according to the specific characteristics of the dataset and
the goals of the analysis. For instance, a smaller multiplier might be employed to identify more
observations as outliers, which could be particularly useful in datasets where subtle deviations from
the trend are important to detect. Conversely, increasing the multiplier can reduce the number of
flagged outliers, allowing for a focus on only the most extreme deviations.
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2.2.2 Application

In this section, we apply anomaly detection to the Amgen stock data to identify outliers, using the
default threshold of 3 · IQR. The results, displayed in Figure 4, reveal clusters of outliers near the
start and end of the dataset, with more significant ones appearing around the center. Notably, the
central anomalies occurred on January 25-26, 2021, and November 8, 2022.

Figure 4: Anomaly detection for Amgen stock

Upon further investigation online into the reasons behind the stock drops following the detected
anomalies, we can refer to Amgen’s reports to help explain these declines.

The first anomaly, observed on January 25-26, 2021, remains difficult to explain despite efforts
to pinpoint a cause. The closest related event is Amgen’s fourth-quarter 2020 financial results,
released on February 2, 2021. The report included some negative factors, such as a 3% decline in the
generally accepted accounting principles (GAAP) earnings per share and a 2% decrease in GAAP
operating income.

The second anomaly, noted on November 8, 2022, appears to be linked to Amgen’s third-quarter
financial results released on November 3, 2022. Key findings that may have contributed to the
stock’s decline include a 1% drop in revenue, an 8% decrease in volume growth, and a 2% negative
impact on foreign trade.

2.3 Granger Causality

2.3.1 Theoretical Foundation

Granger causality is a statistical hypothesis test used to determine whether one time series can
predict another time series by examining the temporal relationships between them. To test for
Granger causality, we work with two stationary time series {Xt, t ≥ 0} and {Yt, t ≥ 0}, meaning
their statistical properties (like mean and variance) do not change over time. The analysis involves
constructing two models: the full model and the reduced model. The full model can be expressed as

Yt =

p∑
k=1

akYt−k +

q∑
k=1

bkXt−k + εt.
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In this equation, ak and bk are coefficients representing the influence of past values of Y and X,
respectively, p and q are the number of lags included, and εt represents the error term.
The reduced model, on the other hand, is defined as

Yt =

p∑
k=1

akYt−k + ε′t.

In this model, the current state of Y is regressed only on its past values, without considering
the influence of X. The primary objective of comparing these two models is to assess whether the
inclusion of past values of X significantly improves the model’s ability to predict Y . Formally, we use
an F -test to check the null hypothesis that the reduced model has a better fit against the alternative
hypothesis that the full model better fits the data. If the p-value is less than 0.05, we accept the
alternative and conclude that the time series X Granger-causes the time series Y . Conversely, if the
p-value is above 0.05, we do not reject the null hypothesis, indicating that X does not Granger-cause
Y .

It is important to note that Granger causality does not imply true causation; it simply indicates
that there is a predictive relationship based on historical data.

2.3.2 Application

We performed F -tests to determine whether the stock prices of Amgen, Johnson & Johnson (J&J),
and Pfizer Granger-cause one another. The analysis was carried out for the four combinations
involving Amgen stock: Amgen on J&J, J&J on Amgen, Amgen on Pfizer, and Pfizer on Amgen.
We conducted the tests for models with equal lag values p and q, ranging from 1 to 5. Table 1
presents the p-values for all the tests conducted.

Lag (p = q) J&J ∼ Amgen Amgen ∼ J&J Amgen ∼ Pfizer Pfizer ∼ Amgen

1 0.93668 0.27094 0.19739 0.22875
2 0.53173 0.14657 0.29022 0.33416
3 0.07013 0.00961 0.47525 0.29471
4 0.15564 0.02754 0.61962 0.36136
5 0.17515 0.00006 0.72912 0.47476

Table 1: P -values for Granger causality F -tests for Amgen, Johnson & Johnson, and Pfizer stock
prices

The table shows that Amgen stock prices do not Granger-cause J&J stock prices, and similarly,
Amgen and Pfizer stock prices do not Granger-cause each other, with all p-values exceeding 0.05.
However, for the Amgen on J&J pairing, significantly small p-values are observed for lags 3 through
5, particularly for lag 5, where the p-value is as low as 0.00006. This indicates that J&J stock
Granger-causes Amgen’s stock price.

There have been previous observations of a connection between J&J and Amgen stock. For
instance, in 2023, Reuters reported that Amgen proposed a biosimilar version of J&J’s top-selling
treatment, Stelara. This may serve as an example of how market developments involving J&J could
impact Amgen. However, this connection could also be coincidental.

2.4 Time Series Modeling: Auto-regressive Model

2.4.1 Theoretical Foundation

A time series can be modeled using an autoregressive model with a lag of p, known as AR(p) model,
represented by the following equation:

Xt = ϕ0 + ϕ1 Xt−1 + ϕ2 Xt−2 + . . . + ϕp Xt−p + εt.
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In this model, ϕ0 is the intercept, ϕ1, . . . , ϕp are the autoregressive coefficients, and εt is the
random error, assumed to follow a normal distribution with a mean of zero and constant variance.

To estimate the parameters ϕ0, . . . , ϕp, methods like maximum likelihood estimation or ordinary
least squares are commonly used.

Additionally, the partial autocorrelation function (PACF) is often employed to identify the most
appropriate lag p of an AR model. The PACF measures the correlation between a time series and its
lagged values, after accounting for the correlations explained by the intermediate lags. Essentially,
PACF isolates the direct relationship between a time series and a specific lag, removing the influence
of shorter lags. A large spike at a particular lag in the PACF plot suggests a strong direct relationship
between the time series and that lag, which should be chosen as optimal.

2.4.2 Application

We start by plotting the partial autocorrelation function for the autoregressive model (see Figure 5
below).

Figure 5: Partial autocorrelation function plot for autoregressive model

The peak at 1 indicates that a lag of 1 provides the best-fitting model. The fitted AR(1) model has
the form

Xt = 0.1106 + 0.998Xt−1 + εt.

2.5 Time Series Modeling: Moving Average Model

2.5.1 Theoretical Foundation

A time series can be modeled using a moving average model with a lag of q, referred to as an MA(q)
model. This is expressed by the equation:
In this equation, τ0 is the intercept, τj represents the jthe moving average coefficient, εt−j denotes
a random process with a mean of zero and constant variance, and εt is the random error, assumed
to follow a normal distribution with a mean of zero and constant variance.

As in an autoregressive model, the PACF plot aids in determining an optimal value of q. The
parameters τ0, . . . , τq are estimated using maximum likelihood estimation or ordinary least squares.
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To determine which model fits the data best, a Bayesian Information Criterion (BIC) is used,
which is calculated as:

BIC = k ln(n) − 2 ln(L̂)

where k is the number of model parameters, n is the sample size, and L̂ is the maximum likelihood.
A lower BIC indicates a better model fit, while a higher BIC suggests a worse fit.

2.5.2 Application

We create another plot of a partial autocorrelation function (PACF), this time for a moving average
model (see Figure 6). The PACF plot shows that lags 7, 9, and 10 are strong fits, suggesting that
it takes about one to two weeks for Amgen’s actions to impact its stock.

Figure 6: Partial autocorrelation function plot for moving average model

We proceed to fitting the three models, MA(7),MA(9), and MA(10), estimating parameters using
maximum likelihood estimation. The BIC values for these three models are respectively, 7099.22,
6906.83, and 6825.09, indicating that MA(10) is the best-fitted model. The estimated form of this
model is as follows:

Xt = 231.15 + εt + 1.693 εt−1 + 1.892 εt−2 + 2.015 εt−3 + 1.941 εt−4 + 1.653 εt−5 + 1.348 ϵt−6

+0.921 εt−7 + 0.611 εt−8 + 0.269 εt−9 + 0.102 εt−10.
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2.6 Time Series Modeling: Autoregressive Moving Average Model

2.6.1 Theoretical Foundation

A time series can be modeled using an autoregressive moving average (ARMA) model with param-
eters p and q, denoted as ARMA(p, q). The model is represented by the equation:

Xt = δ +

p∑
i=1

ϕi Xt−i +

q∑
j=1

τj εt−j + εt.

In this equation, δ represents the stationary component of the model, ϕi is the ith autoregressive
coefficient, and τj is the jth moving average coefficient. Here, εt−j denotes a random process with
a mean of zero and constant variance, while εt is the random error, assumed to follow a normal
distribution with a mean of zero and constant variance. The parameters of this model are estimated
based on the maximum likelihood method or the method of ordinary least squares.

2.6.2 Application

We fit the simplest ARMAmodel with lags (1,1), and, for comparison, we fit the ARMAmodels using
the lag combinations from the previously fitted AR and MA models. Specifically, we tested ARMA
model with (p, q) values of (1,1), (1,7), (1,9), and (1,10). Based on the BIC, the ARMA(1, 1) model
has the best fit (lowest BIC value). The fitted model is: Xt = 235.47 0.9973Xt−1 − 0.06798 εt−1 +
εt.

2.7 Time Series Modeling: Forecasting

Now, we use our fitted models to forecast future values. Since time series models follow algebraic
forms, they can be extended beyond the range of the data they were trained on to predict future
values. For this analysis, we split the first 1,000 observations of the Amgen stock data as the training
set and used the remaining data for testing. We then applied the fitted models to forecast the testing
set (see Figure 7).
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Figure 7: A plot of Amgen stock prices in the testing set along with forecasted values for AR(1),
MA(10), and ARMA(1,1) models

We can see that AR(1) and ARMA(1, 1) models capture most of the testing data within their
confidence bands, indicating potential for real-world application. To evaluate model performance,
we compared their BIC values. The AR(1) model had the best fit, with the lowest BIC of 6250.008,
closely followed by the ARMA(1, 1) model at 6251.341. The MA(10) model performed the worst,
with the highest BIC of 6825.086.

2.8 Stochastic Modeling: Geometric Brownian Motion

2.8.1 Theoretical Foundation

A standard Brownian motion {B(t), t ≥ 0} is a stochastic process that is characterized by the
following properties: (1) it starts at zero, that is, B(0) = 0; (2) it has independent increments,
that is, for any disjoint intervals, the increments are independent random variables; (3) it has
stationary increments, meaning that on any intervals of equal lengths, the increments have the same
distribution; and (4) B(t) has a normal distribution with mean 0 and variance t.
A geometric Brownian motion {X(t), t ≥ 0} with drift constant µ and a volatility constant σ > 0
can be written as:

X(t) = X(0) exp
(
µ t + σ B(t)

)
.

To estimate the parameters µ and σ from observations, we note that

lnX(t+ 1) − lnX(t) = µ + σ B(1).

Thus, the ratio lnX(t + 1)/X(t) has N(µ, σ2 t) distribution. This leads to the likelihood-driven
estimators of the form

µ̂ =
1

n− 1

n∑
i=2

ln
(Xn+1

Xn

)
,
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and

σ̂ =

√√√√ 1

n− 2

n∑
i=2

[
ln
(Xn+1

Xn

)
− µ̂

]2
.

2.8.2 Application

In this section, we analyze Amgen’s closing stock price data, treating it as a stochastic process
modeled by geometric Brownian motion. First, we generate a histogram of the log-price increments
and note that it appears approximately bell-shaped (refer to the figure below). However, the Shapiro-
Wilk normality test yields a p-value of less than 0.000001, indicating that the distribution is not
normal.

Figure 8: Histogram for log-price increments for Amgen stock daily closing prices

Despite this, we continue by estimating the model parameters under the assumption of normality,
which gives us µ̂ = 0.0004141028 and σ̂ = 0.01649394. However, the geometric Brownian motion
model does not seem to capture the data trend accurately, showing large fluctuations and drifting
toward infinity. To further evaluate the model’s fit, we conduct ten simulations to gain a clearer
understanding of how well geometric Brownian motion represents the stock data. In Figure 9, the
observed trajectory is compared with ten simulated trajectories. It is evident that the simulated
paths exhibit greater fluctuations and tend to rise more rapidly.
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Figure 9: Plot of Amgen stock price and ten simulated trajectories of the geometric Brownian motion

.

2.9 Stochastic Modeling: Ornstein-Uhlenbeck Process

2.9.1 Theoretical Foundation

The Ornstein-Uhlenbeck (OU) process {X(t), t ≥ 0} is another type of stochastic model that, unlike
Brownian motion, doesn’t drift away but tends to revert to a mean. This process has a long-term
mean, denoted by µ, and a volatility constant σ. It also includes a parameter θ, which represents
how quickly the process returns to the mean µ.

The OU process is the solution to the following stochastic differential equation:

dX(t) = θ(µ−X(t)) dt + σ dB(t),

and can be expressed in closed form as:

X(t) = X(0)e−θt + µ
(
1− e−θt

)
+

σ√
2θ

e−θtW
(
e2θt − 1

)
.

To estimate the parameters of the model when fitting it to a dataset, we observe that the process
satisfies the following differential equation:

X(t+∆t) = X(t) + θ(µ−X(t))∆t+ σ
√
∆tB(1).

By setting ∆t = 1, we can simplify the equation to:

X(t+ 1)−X(t) = θµ− θX(t) + σ B(1).

This expresses a linear relationship where X(t + 1) − X(t) is regressed on X(t). Denoting the

estimated intercept as a = θ̂µ̂ and the slope as b = −θ̂, we find the parameter estimates: θ̂ = −b
and µ̂ = a/θ̂ = −a/b. The volatility σ can be estimated as the sample standard deviation of the
residuals (the error term).
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2.9.2 Application

To fit an Ornstein-Uhlenbeck process to Amgen’s daily closing stock price, we regress the increments
on the lagged observations, obtaining the parameter estimates: θ̂ = 0.01435791, µ̂ = 249.9769, and
σ̂ = 9.353279. To assess visually how well the Ornstein-Uhlenbeck process captures the overall trend
of Amgen’s stock, we plot ten simulated trajectories, similar to what was done with the geometric
Brownian motion model (see Figure 10). The Ornstein-Uhlenbeck process provides a better fit, as
the trajectories revert to the mean, do not drift towards infinity, and show less variability.

Figure 10: Plot of Amgen stock price and ten simulated trajectories of the Ornstein-Uhlenbeck
process

3 Summary and Discussion

This paper investigated various methods for modeling and testing data to draw meaningful conclu-
sions. Techniques such as anomaly detection and change-point detection were applied to Amgen’s
stock, successfully pinpointing significant price shifts. Granger causality was employed to explore
relationships between Amgen’s stock and those of other companies, while time series analysis proved
valuable for forecasting future stock prices. Stochastic modeling offered another effective approach
to capturing the dynamics of Amgen’s stock. Altogether, the methods used in this study show con-
siderable promise for future applications, both in stock market analysis and in broader data analysis
contexts.

Additionally, other techniques were explored but not included in this paper. For example, non-
parametric models, such as the locally estimated scatterplot smoothing (LOESS) model and thin-
plate smoothing, were used to analyze Amgen’s data. However, these models did not yield significant
results and were therefore excluded. Nonetheless, the outcomes of these models can still be accessed
via the GitHub link provided in the introduction.

For future research, integrating more variables, such as macroeconomic indicators, could enhance
stock price predictions. Combining machine learning techniques with traditional methods may
improve the accuracy of anomaly detection and forecasting. Testing these models across different
industries would help evaluate their robustness, and exploring real-time applications, like automated
trading systems, could offer practical benefits for stock market analysis.
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