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Abstract

Understanding earthquakes remains a challenge in our world which is strongly
affected by natural forces. This study analyzes earthquake data across various seis-
mic regions, focusing on the frequency and intensity of seismic activity. Monthly
maximum magnitudes are modeled using extreme value distribution theory. We use
nonparametric methods, such as locally fitted regressions and splines, alongside para-
metric ARIMA models to assess temporal patterns. Machine learning techniques are
incorporated for anomaly detection, and earthquake occurrences are modeled using
a Poisson process based on interarrival times. These methods provide insights into
earthquake dynamics and may improve risk assessments.

Keywords: Earthquake forecast, Extreme Value theory, thin plate smoothing spline, lo-
cally estimated scatterplot smoothing, time series models, anomaly detection, Poisson pro-
cess

1 Introduction

1.1 Background

Understanding the extreme magnitudes of natural disasters, particularly earthquakes is
vital for effective risk assessment and preparedness. Statistical modeling is crucial in quan-
tifying the likelihood of rare, high-magnitude events that can have devastating impacts.
Using historical earthquake data and probabilistic techniques, statisticians develop models
that estimate these events’ frequency, intensity, and geographic distribution. Such models
are indispensable not only for seismologists but also for urban planners, engineers, and
policymakers who rely on accurate predictions to mitigate potential risks. In this article,
we explore the principles of statistical modeling applied to extreme earthquake magnitudes,
the challenges of capturing rare events, and how advances in data science enhance our ca-
pacity to forecast and manage earthquake risks.

This article examines the frequencies and magnitudes of earthquakes across 11 seismic zones
worldwide. They are (in alphabetical order): California (United States), Chile, China, Ti-
bet, India, Iran, Japan, Mexico, Philippines, Taiwan, and Turkey. Seismographs classify
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these zones (depicted in Figure 1 below) based on the dynamics of tectonic plate move-
ments, which fall into four distinct categories: subduction zones, collision zones, strike-slip
faulting, and complex tectonic regions.

• Subduction Zones: Among the most powerful earthquakes are those that occur in sub-
duction zones, where one tectonic plate is forced beneath another. Seismic zones in Chile,
Japan, Mexico, and the Philippines exemplify this phenomenon. Chile’s location along the
Peru-Chile Trench, where the Nazca Plate subducts beneath the South American Plate, led
to the 1960 Valdivia earthquake with a magnitude of 9.5, the most powerful earthquake ever
recorded. In Japan, the Nankai Trough experiences frequent megathrust earthquakes as
the Philippine Sea Plate subducts beneath the Eurasian Plate, often resulting in tsunamis.
Other regions, such as Mexico and the Philippines, also face significant seismic risks from
subduction. Mexico’s seismic activity arises from the Cocos Plate’s subduction beneath the
North American Plate along the Middle America Trench, while the Philippine Sea Plate’s
subduction along the Philippine Trench often triggers earthquakes and volcanic activity in
the Philippines.

• Collision Zones: In Central China, Tibet, and India ongoing collisions between the In-
dian Plate and the Eurasian Plate have formed the Himalayan mountain range and the
Tibetan Plateau, both known for intense seismic activity. Earthquakes in these areas re-
sult from thrust faulting as the Indian Plate is forced beneath the Eurasian Plate. While
both regions involve compressional tectonics, they differ in seismic hazard scale: Central
China experiences moderate to large earthquakes, while the Himalayas face a higher risk
of catastrophic seismic events due to more significant tectonic forces.

• Strike-Slip Faulting: California and Turkey are characterized by strike-slip faulting, where
two tectonic plates slide past each other horizontally. The San Andreas Fault in California
and the North Anatolian Fault in Turkey are instances of this type of fault system, capable
of producing large earthquakes with seismicity concentrated along the fault lines. In Cal-
ifornia, the movement occurs between the Pacific and North American Plates, while the
North Anatolian Fault involves the westward movement of the Anatolian Plate relative to
the Eurasian Plate.

• Complex Tectonic Regions: Iran and Taiwan present highly complex tectonic environ-
ments. Iran is situated at the convergence of the Arabian and Eurasian Plates, where both
thrust and strike-slip faulting contribute to its status as one of the most seismically active
regions in the Middle East. Likewise, Taiwan lies at the intersection of the Eurasian and
Philippine Sea Plates, featuring both strike-slip and compressional faulting.
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Figure 1: Map of Earthquake Faults Around the World. Source: MapsofWorld (https:
//www.mapsofworld.com/)

1.2 Literature Review

There has been significant effort in the past to understand and interpret the physical precur-
sors of seismic events. Physical precursors include foreshocks, ground deformation, changes
in groundwater levels, and variations in radon gas emissions among others. Nevertheless, it
is a daunting task to predict earthquakes because they are characterized by varying mag-
nitudes and unpredictable patterns [1,2].

In terms of geological approaches, one fundamental concept is the elastic rebound theory,
which explains how stress accumulates along faults over time until it exceeds the frictional
strength of rocks, leading to an earthquake. Rate-and-state friction laws provide insight
into how frictional resistance on faults evolves, helping researchers model aftershocks and
future seismic events based on prior slip behavior. Geological studies also play a crucial
role in predicting earthquakes. By examining tectonic plate movements and studying pa-
leoseismology, researchers can assess regions at risk for future quakes. Paleoseismology
involves analyzing geological records of past earthquakes to identify patterns and recur-
rence intervals. Geodetic measurements, such as the Global Positioning System (GPS) and
the Interferometric Synthetic Aperture Radar (InSAR), allow scientists to monitor ground
deformation and stress accumulation along faults with high precision. Strain gauges placed
near fault lines provide real-time data on ground movement, helping to identify sudden
changes that may signal an impending earthquake.
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Probabilistic Seismic Hazard Analysis (PSHA) remains central in the field. It attempts
to estimate the probability of different categories of seismic events occurring over time in
a given area based on historical earthquake data and tectonic models. Although it’s useful
for long-term risk assessment, it lacks the temporal precision required for short-term pre-
diction [3,4].

Statistical and probabilistic models have grown in popularity in recent decades as tools
to predict earthquakes. These models often rely on historical earthquake data to estimate
the likelihood of future events. For example, the Poisson process is a model frequently
used in seismology, assuming that earthquakes occur independently over time. However,
this assumption has come under criticism, leading to the development of more complex
models such as the Epidemic Type Aftershock Sequence (ETAS) model [5]. This model
is an extension of the Poisson process to allow for aftershocks, which represents the fact
that if an earthquake occurs in one geographic region, further events are more likely in the
same region. This model, however, is not very useful in predicting impending main shocks
[6]. A third statistical approach is Bayesian inference, which integrates prior knowledge
and rapidly updates predictions as new data become available, making it more effective for
real-time forecasting [7].

Recent advances in machine learning and artificial intelligence have introduced new
prospects in earthquake prediction. Only a few highly complex machine learning algo-
rithms can sift through seismic data to pick out patterns and correlations that are not
evident in other forms of research. The machine learning models employ random forests,
support vector machines, and neural networks to predict future earthquakes. A major ad-
vantage of these models is their capability to deal with any sort of complexity in a dataset.
Deep learning, which is a subcategory of machine learning, also shows some potential for
earthquake prediction. Zhu and Beroza [8] developed a deep-learning model that could
detect low-frequency earthquakes more accurately than traditional methods. Their model
uses convolutional neural networks to process seismic waveforms, allowing them to identify
subtle patterns that could represent precursors to larger seismic events.

Despite these developments, the use of machine learning for earthquake prediction re-
mains in its early stages. One of the greatest challenges is the ”black box” nature of many
machine learning models: it is hard to understand what physical processes the models are
capturing. Additionally, research is now being conducted to test how well such models will
do in generalizing across different seismic regions and conditions [9]. Currently, prediction
through geospatial technologies like remote sensing and Geographic Information Systems
(GIS) is playing a central role. Satellite-based remote sensing allows the monitoring of both
ground deformation and movements of faults among other geophysical phenomena in order
to provide earlier warning signs of seismic activity. In addition, GIS technologies integrate
and analyze spatial data originating from multiple sources, which enables seismic hazards
to be mapped out and areas with high risks to be recognized [10].

Due to the complexity of earthquake prediction, integration of multiple disciplinary
approaches became essential. By using each model’s advantages, multi-disciplinary models
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using physical, statistical, and machine-learning methods increase the accuracy of predic-
tion. For example, Jordan et al. suggest a multi-tiered approach where seismic risk might
be assessed using geological surveys, statistical models, and real-time analysis of seismic
data [11]. On the other hand, with regard to standardized testing and evaluation of models
for earthquake forecasting, the Collaboratory for the Study of Earthquake Predictability
(CSEP) has been very much at the forefront. The efforts of CSEP underline the real
requirement for rigorous testing of models and open sharing of data in the seismological
community [12].

Despite all the advances successfully made in this field, earthquake prediction still faces
many challenges. The difficulty comes from the fact that earthquakes are unpredictable,
the modeling is crude, and data availability is poor. Moreover, the ethical and societal im-
plications that go with earthquake prediction, such as the possibility of false alarms leading
to public unrest, make the challenge even bigger within this field [13]. Future research is
likely to focus on improving the accuracy and interpretability of machine learning models,
as well as the integration of diverse data sources, including seismic, geodetic, and geophys-
ical data. Advances in computational power and data processing techniques will also play
a critical role in enabling more sophisticated analyses and real-time predictions [14].

1.3 Data Overview

This study utilizes data spanning from June 15, 1980, to June 15, 2024, encompassing eleven
global locations in alphabetical order: California (United States), Chile, China, Tibet, In-
dia, Iran, Japan, Mexico, the Philippines, Taiwan, and Turkey. The data are sourced from
the United States Geological Survey Earthquake Hazards Program<https://www.usgs.gov/
programs/earthquake-hazards>, which monitors earthquakes, assesses their impacts, and
conducts research under the National Earthquake Hazards Reduction Program, a collabo-
rative effort of four federal agencies established by Congress.

For our analysis, we concentrated on the time stamp (date + time), and magnitude
recorded on the Richter scale, filtering for magnitudes of 3.0 and above. A snippet of the
data for Tibet is presented in Table 1 below.

1.4 Article Layout

This article is organized as follows: For each seismic region, we first model the frequency
and intensity of monthly maximum magnitudes. This analysis is based on the theoretical
framework of extreme value distributions. Next, we focus on modeling all earthquake oc-
currences with a minimum of 3.0 magnitudes through time series analysis. We examine the
temporal behavior of magnitudes using nonparametric methods such as locally fitted linear
regressions and splines, while also fitting various parametric time series models, building
up to an autoregressive integrated moving average model. We then perform anomaly de-
tection analysis using machine learning techniques. Finally, we analyze the distribution of
interarrival times to model earthquake occurrences as a Poisson process.
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Time Magnitude
2024-06-14T23:24:18.637Z 4.6
2024-06-09T16:01:23.107Z 4.4
2024-06-05T12:04:59.113Z 4.3
2024-06-03T18:54:06.025Z 4.6
2024-06-03T18:53:48.588Z 4.2
2024-06-01T10:59:01.251Z 4.3
2024-06-01T03:00:02.003Z 4.4
2024-06-01T00:46:37.593Z 5.6
2024-05-28T01:13:06.793Z 4.3
2024-05-26T23:02:53.725Z 4.4

Table 1: Tibet Earthquake Data Snippet

2 Extreme Value Modeling

2.1 Theoretical Framework

According to the Fisher–Tippett–Gnedenko theorem, when properly normalized, the max-
ima of earthquake magnitudes converge to a Gumbel distribution as the sample size in-
creases. To express this mathematically, consider a sequence of independent and identi-
cally distributed random variables X1, X2, . . . and let Mn = max(X1, X2, . . . , Xn) represent
their maximum value. To examine the limiting behavior of Mn, we define random variables

Zn =
Mn − bn

an
where an > 0 and bn are sequences that depend on n and are chosen to

ensure convergence. The theorem asserts that as n approaches infinity, the distribution of
Zn converges to one of three types: Gumbel, Fréchet, or Weibull, depending on the charac-
teristics of the original distribution of Xi’s. Notably, it is established that the maxima of
earthquake magnitudes follow a Gumbel distribution in the limit (reference is needed).
The cumulative distribution function of the Gumbel distribution is given by

F (x;µ, β) = exp
(
− e−

x−µ
β

)
, x > 0,

where µ is the location parameter, and β > 0 is the scale parameter.
When fitting a Gumbel distribution to data using R, such as through the ‘eva::fit()‘ func-
tion, the code estimates the location and scale parameters of the distribution using Max-
imum Likelihood Estimation (MLE). Specifically, this function takes a dataset as input
and provides estimates for the parameters that describe the Gumbel distribution, which is
characterized by its ability to model the distribution of maximum values. The normalizing
constants an and bn play a crucial role in Extreme Value Theory (EVT) by rescaling the
sequence of maxima Mn = max(X1, . . . , Xn) of independent and identically distributed
(i.i.d.) random variables Xi. As n approaches infinity, the normalized form (Mn − bn)/an
converges to a Gumbel distribution, allowing for effective modeling of extreme events.
Thus, an adjusts the spread of the maxima, while bn shifts the distribution, ensuring that
the rescaled maxima conform to the limiting Gumbel distribution in the context of EVT.
In practice, a block maxima approach is employed to model extreme values. This method
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involves analyzing the maximum values over specific intervals, or ”blocks.” Statistical tech-
niques, such as maximum likelihood estimation, are used to estimate the parameters of the
Gumbel distribution based on the observed maxima.

2.2 Applications

In this analysis, we used months as blocks and calculated the maximum earthquake mag-
nitudes for each month. These maxima were then normalized according to extreme value
theory, and we fitted the Gumbel distribution using the maximum likelihood estimation
method, supported by numerical optimization. The same process was applied to data from
each of the 11 seismic zones individually. We calculated asymptotic confidence intervals for
the Gumbel parameters and produced diagnostic plots such as Q-Q plots, extreme value
analysis (EVA) plots, and histograms. We demonstrate our analysis for the Tibet region,
with Figure 2 below showing the corresponding graphs.

Figure 2: Tibet regions: Q-Q plot and EVA plots

For instance, in the case of the Tibet region, the location parameter was estimated
at 7.77 with a 95% confidence interval (CI) of [7.48, 8.05], and the scale parameter was
estimated at 0.92 with a 95% CI of [0.71, 1.13]. The mean was calculated as 8.30 with a
95% CI of [7.95, 8.64]. A chi-squared goodness-of-fit test yielded a p-value of about 0.30,
indicating that the Gumbel distribution fits the data well. To visually represent this fit, a
histogram was overlaid with the Gumbel curve (see Figure 3 below).
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Figure 3: Histogram of Normalized Maximum Earthquake Magnitudes with Fitted Gumbel
Density for Tibet

For each of the eleven sites, when performing the chi-squared test, a degree of freedom
of 9 is used (12 categories, minus 1 for the total and 2 for the estimated parameters). The
Gumbel distribution fits well the data from eight out of eleven sites. The results for all the
sites are summarized in Table 2 that follows.

Region µ̂ 95%LCL 95%UCL β̂ 95%LCL 95%UCL χ2 p-value Gumbel?

China 7.1843 6.8852 7.4833 0.9738 0.7455 1.2020 22.1646 0.0084 No
Tibet 7.7667 7.4841 8.0493 0.9177 0.7085 1.1268 10.7223 0.2952 Yes
India 7.0592 6.7236 7.3947 1.0906 0.8435 1.3377 16.6770 0.0540 Yes
Iran 7.8013 7.4843 8.1183 1.0276 0.7942 1.2610 14.0177 0.1220 Yes
Japan 9.0775 8.7986 9.3564 0.9012 0.7053 1.0971 9.3298 0.4070 Yes
Mexico 8.9628 8.6157 9.3100 1.1205 0.8848 1.3562 12.7932 0.1720 Yes
Philippines 9.1371 8.8277 9.4464 0.9979 0.7794 1.2165 17.8582 0.0369 No
Chile 7.8357 7.5352 8.1361 0.9822 0.7486 1.2159 13.9092 0.1256 Yes
Taiwan 7.4839 7.1535 7.8142 1.0702 0.8309 1.3095 7.4460 0.5908 Yes
Turkey 7.1988 6.8913 7.5062 1.0024 0.7625 1.2422 17.9831 0.0354 No
US California 6.8259 6.4724 7.1793 1.1467 0.8831 1.4102 11.5445 0.2402 Yes

Table 2: ML Estimates and Chi-squared Test Results for 11 Regions with 95% CI for both
Location and Scale Parameters

2.3 Frequency analysis

For the eleven sites, the time differences between consecutive monthly maxima are deter-
mined and used to estimate the date and magnitude of the next significant earthquake.
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Figure 4: Histogram of Time Difference between Two Consecutive Monthly Maxima for
Tibet

With information including the mean, median, and mode of the amount of time between
monthly maxima, predictions are formed. For example, for Tibet, the time difference
variable had a median of 31 days, a mean of 30.55 days, and a mode of 27 days. The CI
was [7, 53]. For the magnitude variable, there was a median of 5, a mean of 5.077, and
a mode of 5. The 95% CI for the mean was [4.2, 6.4]. The prediction was made that
from June 30th, 2024 to July 3rd, 2024, there would be an earthquake in Tibet with a
magnitude between 5.032 and 5.123, but neither the magnitude nor the date was correctly
predicted. Using monthly maxima to predict the next significant earthquake did not prove
to be useful, as only four out of the eight sites had correct date predictions, and none had
correct magnitude predictions.

Region China Tibet India Iran Japan Mexico Philippines Chile Taiwan Turkey US California

Time Difference
Median 31 31 31 30 31 30 31 30 30 30 31
Mean 30.89 30.55 31.18 30.53 30.39 30.4 30.42 30.63 31.21 30.58 30.4
Mode 31 27 33 21 29 31 36 23 26 21 28
95%LCL 6 7 7 6 7 7 7.175 7.575 9 5.725 6
95%UCL 55.05 53 56 54 54 54 53 54.425 56 56 54.825

Max Magnitude
Median 4.8 5 4.8 5.1 5.6 5.4 5.5 5 4.8 4.7 4.435
Mean 4.878 5.077 4.866 5.18 5.655 5.462 5.628 5.138 4.9 4.872 4.597
Mode 4.8 5 4.6 5 5.4 5.2 5.2 4.7 4.5 4.5 4.2
95%LCL 4 4.2 4.1 4.5 4.8 4.414 4.9 4.2 4 4 3.6
95%UCL 6.2 6.4 6.2 6.5 7.1 7.1 7.1 6.6425 6.4 6.3275 6.1

Prediction
Magnitude Prediction 4.8779 5.0774 4.8656 5.1805 5.6551 5.4623 5.6282 5.1375 4.9002 4.8720 4.5974
95%LCL (Magnitude) 4.8281 5.0319 4.8173 5.1352 5.6041 5.4034 5.5796 5.0815 4.8449 4.8211 4.5395
95%UCL (Magnitude) 4.9276 5.1228 4.9138 5.2258 5.7061 5.5212 5.6768 5.1935 4.9555 4.9228 4.6554
Date Prediction 2024-07-08 2024-07-02 2024-07-09 2024-07-14 2024-07-02 2024-07-05 2024-07-11 2024-07-08 2024-07-03 2024-07-10 2024-07-08
95%LCL (Date) 2024-07-07 2024-06-30 2024-07-08 2024-07-12 2024-07-01 2024-07-04 2024-07-10 2024-07-07 2024-07-02 2024-07-08 2024-07-07
95%UCL (Date) 2024-07-09 2024-07-03 2024-07-10 2024-07-15 2024-07-03 2024-07-06 2024-07-12 2024-07-09 2024-07-04 2024-07-11 2024-07-10
Correct? (Magnitude) No No No No No No No No No No No
Correct? (Date) No No Yes Yes Yes Yes Yes No No Yes No

Table 3: Time Difference, Max Magnitude, and Prediction Analysis for Each Region
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3 Nonparametric Modeling

3.1 Locally Estimated Scatterplot Smoothing Method

3.1.1 Theoretical Framework

The locally estimated scatterplot smoothing (LOESS) is a nonparametric method for mod-
eling a series of data with no assumptions about the distribution of the data. The general
form of modeled relation is defined by the formula

y = f(x, . . . , xk) + ε (1)

where f is an unknown function, and ε represents the error terms that are independently
and identically distributed with a zero mean and constant variance. The LOESS method
evaluates the function f at each data point and plots on the scatterplot a curve that con-
nects the fitted points by straight lines.
The estimation of f at each point in the data is done by fitting a weighted polynomial in
the local neighborhood of each point. The smoothing parameter p/n represents the fraction
of all points that are captured by each local neighborhood Np(x

0) with the center at a fixed
point x0 = (x0

1 . . . , x0
k). A weighted linear regression of the form

l(x) = l(x1, . . . , xk) = β0 + β1(x1 − x0
1) + · · · + β(xk − x0

k)

is fitted through the points x = (x1, ..., xk) in Np(x
0). The line is weighted because it is

chosen in such a way that it minimizes the sum∑
xi∈Np(x0)

(
yi − l(xi)

)2

w
(∥xi − x0∥

r(x0)

)
where xi = (x1i, . . . , xki), i = 1, . . . , p. Here ∥ · ∥ denotes the standard Euclidean distance,
that is,

∥xi − x0∥ =
√
(x1i − x0

1)
2 + · · · + (xki − x0

k)
2,

w(·) is the weight function, and r(x0) = max
xi∈Np(x0)

∥xi − x0∥ is the radius of the neigh-

borhood. The weight function used in the analysis is the normalized tricube function

w(x) =
32

5
(1− ∥x3∥)3, if ∥x∥ ≤ 1, and 0, otherwise.

3.2 Thin-plate Smoothing Spline Method

3.2.1 Theoretical Framework

The thin-plate smoothing spline (TPSS) method is another nonparametric method that
estimates the function f in (1) by minimizing the sum of squares of the residuals

n∑
i=1

(
yi − f(x1i, x2i, . . . , xki

)2
+ λ Jm(f)
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where λ is a smoothing parameter responsible for the smoothness of the fitted surface, and
the roughness penalty term Jm is defined as

Jm(f) =

∫ ∞

∞
· · ·

∫ ∞

−∞

∑ m!

α1!α2! . . . αk!

( ∂m f

∂ xα1
1 ∂ xα2

2 · · · ∂ xαk
k

)2

dx1 · · · dxk

with α1 + · · ·+ αk = m. The quantity m is the degree of smoothness of the function f . A
common approach is to consider functions f of the following algebraic form:

f(x,x1, . . . ,xn) = β0 + β1 x1 + · · · + βn xn +
n∑

i=1

wi ∥x− xi∥2 ln
(
∥x− xi∥

)
where β0, . . . , βn are real-valued coefficients, xi = (x1i, . . . , xki), i = 1, . . . , n are the data
points, and wi’s are real-valued weights for each data point.

3.3 Application

We fit LOESS and TPSS to the data for all eleven sites. The smoothing parameter for
LOESS is chosen as 0.05, whereas for TPSS it is 0.000005. Graphs for Tibet data are
presented in Figures 5 and 6 below. From the graphs, despite highly dispersed data points,
the fitted LOESS and TPSS curves reveal periodic fluctuations, indicating an underlying
trend amidst the noise.

Figure 5: Fitted LOESS Curve with a 95% Confidence Band for Tibet
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Figure 6: Fitted TPSS Curve with a 95% Confidence Band for Tibet

4 Time Series Models

4.1 Theoretical Framework

Time series models are crucial for analyzing data collected over time. A commonly used
model is the autoregressive (AR) model. For a time series yt, the AR(p) model is defined
as:

yt = ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt

where ϕ1, . . . , ϕp are the autoregressive parameters, and εt is a white noise error term with
a mean of zero and constant variance σ2. The autoregressive structure implies that the
current value yt is regressed on its past values up to lag p. Similarly, a moving average
(MA) model of order q is written as:

yt = εt + θ1εt−1 + · · ·+ θqεt−q

where θ1, . . . , θq are the moving average coefficients, and εt is a random process with mean
zero and variance σ2. The MA model expresses the current value yt as a linear combination
of past errors. The autoregressive moving average (ARMA) model, which combines both
AR(p) and MA(q) models, is given by:

yt = ϕ1yt−1 + · · ·+ ϕpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q

This model captures both the dependence on past values and past errors, making it suitable
for stationary time series. To ensure that a time series is stationary, we often employ the
Augmented Dickey-Fuller (ADF) test. The ADF test examines whether the data have a
unit root (non-stationary) or is stationary. The ADF regression equation is:

∆yt = α + βt+ γyt−1 + δ1∆yt−1 + · · ·+ δp∆yt−p + εt
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where ∆yt = yt − yt−1. The test statistic is calculated as:

τ =
γ̂

SE(γ̂)
.

If the test statistic τ is smaller than the critical value, we reject the null hypothesis (non-
stationarity) and conclude that the process is stationary. The Partial Autocorrelation Func-
tion (PACF) helps in identifying the appropriate lag p for AR models by measuring the
correlation between yt and yt−k, accounting for the effect of intermediate lags 1, . . . , k − 1.
The PACF at lag k is the correlation between yt and yt−k after removing the effect of the
lags between 1 and k− 1. Significant spikes in the PACF plot indicate the lags that should
be included in the model.

To compare the model fits, the Akaike Information Criterion (AIC) is widely used as
a metric for model selection. It is given by AIC = −2lnL + 2k where L is the maximum
value of the likelihood function of the model, and k is the total number of parameters the
model utilizes. A lower AIC value indicates a better-fitting model, as it achieves a better
trade-off between goodness of fit and simplicity.

4.2 Application

We refined the data by selecting only events with magnitudes greater than 6.0 and applied
a range of time series models to each site. The optimal model for each location was deter-
mined by comparing Akaike Information Criterion (AIC) values, with the model having the
lowest AIC being chosen as the best fit. Figure 7 below illustrates both the fitted model
predictions and the actual observed data for the Tibet region. In this case, the AR(1)
model provided the best fit for the region’s time series data.

Figure 7: Fitted Time Series Models for Tibet’s Data
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Table 4 below presents the AIC values for each fitted model across all eleven regions. The
model with the lowest AIC is selected as the best fit.

Model China Tibet India Iran Japan Mexico Philippines Chile Taiwan Turkey US California

AR(1) 43.67524 45.71278 36.44550 62.99334 194.1014 179.6045 192.7338 130.1584 44.97536 53.1627 24.76077
MA(1) 43.40414 45.76629 35.45929 62.99220 194.0690 179.7224 192.8627 130.1316 44.93794 53.19481 24.24802
ARMA(1,1) 40.64334 47.68394 36.52129 64.99003 195.9143 181.3718 193.4757 131.7950 45.34316 52.74383 24.62957
ARIMA(1,1,1) 47.32254 48.88182 39.71896 66.50585 198.9591 184.0309 197.3524 134.1322 49.04869 56.27383 28.24141
ARIMA(0,1,1) 46.10187 48.09877 39.60975 64.84639 197.3393 183.0446 196.0604 132.2398 47.23685 54.37357 26.86149
ARIMA(1,1,0) 58.05595 55.67496 47.38252 81.21313 277.3341 220.9284 243.2171 170.7055 62.85192 61.87926 35.11636

Best Model ARMA(1,1) AR(1) AR(1) MA(1) MA(1) AR(1) AR(1) MA(1) MA(1) ARMA(1,1) MA(1)

Table 4: AIC Values and Model Comparison for Different Regions

5 Anomaly Detection

5.1 Theoretical Framework

Anomalies in time series data are often identified by examining the residuals after account-
ing for trends and seasonality. This is done through a process called de-trending, where the
trend and seasonal elements are removed, leaving behind residuals that represent the core
fluctuations in the data. These residuals are then analyzed for deviations, with significant
outliers standing out from the expected range.

Outliers are typically determined using the interquartile range (IQR). Values are flagged
as outliers if they fall below Q1 − 3 · IQR or exceed Q3 + 3 · IQR. The first quartile (Q1)
represents the point below which 25% of the data lies, while the third quartile (Q3) repre-
sents the value below which 75% of the data falls. The IQR, calculated as IQR = Q3−Q1
captures the range of the middle 50% of the data, making it a robust indicator of variability
that is less sensitive to extreme outliers.

The default threshold of 3 · IQR is not fixed. In R, outliers are identified as values
that fall 0.15/α · IQR beyond the quartiles. The default setting of α = 0.05 results in a
multiplicative factor of 3. Increasing α causes more observations to be considered outliers,
while decreasing α results in fewer observations being classified as outliers.

To examine further the identified anomalies, a bootstrap method is applied, and a boot-
strap confidence interval is computed. This resampling technique involves drawing a large
number of samples (typically over 1,000) with replacements from the original dataset, en-
suring that the resample sizes match the original sample size. The mean or other statistic
of interest is then calculated for each bootstrap sample. The distribution of these statis-
tics, often visualized as a histogram, forms an empirical distribution. Confidence intervals
are then derived from this distribution, typically by taking percentiles of the resampled
statistics, such as the 2.5th and 97.5th percentiles for a 95% confidence interval. Such a
confidence interval is known as an Efron percentile confidence interval.
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5.2 Application

We detect anomalies separately for each region, selecting only events with magnitudes
greater than 5.0 and adjusting the value of α to have ten to fifteen anomalies showing. For
instance, Tibet has an alpha value of 0.04, producing 14 anomalies. If anomalies are less
than 30 days apart, they are regarded as aftershocks and do not count separately. Figure
8 visualizes the anomalies for the Tibet data set.

Figure 8: Anomalies for Tibet Earthquake Data

To continue our analysis of anomalies, we concentrate on the anomalies specific to each
region and apply the bootstrap method to calculate the point estimate of the mean magni-
tude, along with the Efron percentile confidence interval for that mean (see Table 5 below).
By excluding the last anomaly, we can determine whether this data point is covered by the
confidence interval produced by our analysis. For the region of Tibet, the mean magnitude
is calculated as 6.84, with a 95% confidence interval of [6.58, 7.2]. The last anomaly, with
a severity of 6.6, is captured by this confidence interval, indicating a reasonable prediction
for this region.
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Metric China Tibet India Iran Japan Mexico Philippines Chile Taiwan Turkey US California

Alpha 0.06 0.04 0.05 0.045 0.033 0.042 0.03 0.045 0.08 0.06 0.1
# Anomalies 11 14 10 15 12 11 13 15 14 10 13

Severity
Mean 6.84 6.846 6.778 6.864 7.273 7.46 7.4 7.136 6.723 6.944 6.667
95%LCL 6.58 6.623 6.567 6.671 7.173 7.28 7.292 6.85 6.515 6.767 6.467
95%UCL 7.20 7.061 7.055 7.064 7.373 7.66 7.517 7.479 6.961 7.133 6.883
Median 6.6 6.8 6.7 6.7 7.3 7.4 7.4 7.0 6.7 6.8 6.65
95%LCL 6.5 6.5 6.5 6.6 7.1 7.2 7.25 6.7 6.4 6.7 6.45
95%UCL 7.25 6.9 6.9 7.1 7.4 7.7 7.6 7.2 6.9 7.2 7.0

Frequency
Mean 1662.11 1090.17 1421.63 894.77 1448.10 1569.00 1054.55 1066.31 1090.92 1689.38 1229.82
95%LCL 869 612 762 442.5 562 826 599 448 811 822 532
95%UCL 2543 1689 2110 1400.5 2457 2306 1647 1768 1348 2723 2242
Median 1613 779 1137 600 587 1200 770 949 1191 1528.5 694
95%LCL 292 429.5 543 308 307 588 410 115.5 780 280 316
95%UCL 2373 1564.5 2539 1384.8 2730 2823 1695 1234 1451 2713 1528
Last Frequency 241 978 1315 1671 656 818 3700 455 563 829 419
Last Severity 6.6 6.3 7.8 7.3 7.5 7.6 7.6 6.7 7.4 7.8 6.0

Frequency in CI? No Yes Yes No Yes Yes No Yes No Yes Yes
Severity in CI? Yes No No No No Yes Yes Yes No No No

Table 5: Anomaly Severity and Frequency Analysis Across Regions

6 Interarrival Time Analysis

6.1 Theoretical Framework

In earthquake analysis, events are often modeled using a Poisson process, which has three
key assumptions: events are independent, occur at a constant rate, and the probability of a
future event is unaffected by past events. The intervals between consecutive events, referred
to as interarrival times, are modeled as exponentially distributed random variables. For a
Poisson process with a rate λ, the interarrival times Ti follow an exponential distribution
characterized by the probability density function:

fT (t) = λe−λt, t ≥ 0.

The mean interarrival time is 1/λ, representing the expected time between events. This
model implies that shorter intervals between earthquakes are more likely, which is often
observed in aftershock sequences.

The assumption of exponentially distributed interarrival times is widely used in seis-
mology to model random earthquake occurrences. Estimating λ from historical data allows
researchers to model future events. Deviations from this model may indicate non-random
patterns, such as earthquake clustering or changes in seismic activity.

To determine if the interarrival times adhere to an exponential distribution, a standard
chi-squared goodness-of-fit test is conducted.

6.2 Application

We analyze data from all eleven regions, focusing on earthquakes with magnitudes of 3.0 or
5.0 to keep the number of events manageable. We compute the interarrival times and plot a
histogram for each site. The chi-squared test is performed, with the parameter λ estimated
as the reciprocal of the sample mean of the interarrival times. Figure 9 shows a histogram
of the interarrival times for the Tibet data, alongside the fitted exponential distribution
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curve. The chi-squared test statistic is 8.982936, yielding a p-value of 0.3437375, which
exceeds 0.05. This suggests that the interarrival times follow an exponential distribution.
Similarly, the analysis confirms that the interarrival times for all eleven regions fit an
exponential distribution (see Table 6 below).

Figure 9: Interarrival Times for Tibet Overlaid with Exponential Fit

Metric China Tibet India Iran Japan Mexico Philippines Chile Taiwan Turkey US California

Aftershock Max. 30 30 25 20 30 25 20 30 30 30 30
Min Mag 5 5 3 3 5 5 5 3 3 3 4
Chi-squared Stat. 8.9829 7.1373 10.7192 9.9317 11.7866 8.0913 3.8408 5.6301 12.2221 7.8538 5.0669
p-value 0.3437 0.5219 0.2181 0.2699 0.1610 0.4246 0.8712 0.6886 0.1416 0.4479 0.7504

Table 6: Interarrival Time Distributions Across Regions

7 Summary and Discussion

In this study, we explored various models to analyze earthquake data across different seis-
mic regions. The investigation included modeling the frequency and intensity of monthly
maximum magnitudes using extreme value distributions, followed by a time series analysis
of earthquake occurrences We applied both nonparametric methods, such as locally fitted
regressions and splines, and parametric models, including autoregressive integrated mov-
ing average (ARIMA) models, to examine temporal behavior. Additionally, we employed
machine learning techniques for anomaly detection and modeled earthquake occurrences
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using a Poisson process based on interarrival times.

Despite our comprehensive approach, none of the models provided consistently strong
performance across all regions or earthquake magnitudes. Further research is necessary to
develop more robust models that can better handle the complexity and unpredictability of
earthquake data. Possible directions include incorporating more advanced machine learning
techniques such as deep learning or considering physical factors like tectonic movements to
improve prediction accuracy.

Supplemental Materials

All the data sets, codes, and plots can be accessed here: GitHub Repository: Earthquake-
ML
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