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Abstract

In this paper, we embark in the study of the puzzle Parity Lights, studying its
properties. The puzzle is a simple one. It is played on a grid with variable dimensions.
Traditionally, each cell is either on or off. The puzzle starts with each cell in a random
state. The player is allowed one move, called a ”tap” at a target cell: by swapping
the state in each cell defined by the von Neumann neighbourhood at r = 1 around the
target cell. The goal of the puzzle is to put the state of each cell in the grid to off. A
modified version of this puzzle will be applied to this such that an on cell is one and
an off cell is zero. We try to generalize the puzzle such that many modulos can be
applied allowing for n-state Parity Lights puzzles. The transition function mentioned
is a representation of ”tapping” each lit cell on an empty grid.

Keywords: Convolution, grids, functional composition, linearity, puzzles, parity, parity
lights, color-switching graphs, puzzle, abstract algorithms, cellular automata

1 Motivation

The theorem should be one which, even if stated originally [...] in a quite special form, is a
capable of considerable extension and is typical of a whole class of theorems of its kind.
∼ G.H. Hardy, A Mathematician’s Apology [5]

This paper was originally created in response to a problem that existed when program-
ming a specific game. It is difficult to find how this concept had arisen to mind, as this
writing is five years after the event. The problem that existed was the need to be able to
determine if the puzzle that was generated was actually solvable for any starting state of the
puzzle. After performing more study (by observing the patterns made by the game), fasci-
nation arose from the patterns that became of this. Awareness increased as time passed of
the certain generality that these rules must have, and it became important for this question
of tractability to be determined. We hope to speak generally within this paper so that the
ideas may be significant to apply to many other concepts. The understanding and communi-
cation of the concepts that are relevant is still a significant part of this endeavor, so we will
not withhold from specific example. We would like to display some important and beautiful
fractals that we have been able to explore in the process of solving this problem that we
hope will convince you to continue to read if we have failed at that task so far.
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Figure 1: These are three fractals at a power of two from a variety of neighborhoods and
starting configurations.

2 Introduction

Throughout this paper, it will be considered our principal purpose to determine an algorithm
that will allow us to solve a grid of any size and state or determine that it is not solvable. Our
secondary purpose, although directly irrelevant, will be to understand and appreciate the
entirety of the amazing patterns that form as a result of our approaches to this problem. Math
is art. Therefore, we ask the reader to approach this paper as an artist, as a mathematician,
and as a pursuer of an understanding of Nature. Alexander Giffen, of the University of
Dayton, and Darren B. Parker, of Grand Valley State University, propose a generalized
version Lights Out, a handheld game by Tiger Electronics c○, which would include Parity
Lights as a subset of this new description [4]. In order to understand how these two systems
interact with each other, it becomes imperative that one translates the concept of varying
terms between each of these systems of description. Throughout their paper, they refer to
the graph of interactions of their game as G. We will adopt this notation with a caveat, that
G is a set of graphs, and that G = {Gm,n | m,n}. They use a notation of a set of colors
for the states that each vertex can be in, C, and I will say that C = Z2. The permutation
function will be: T (a) = a+1. If the grid is solvable, then it is true that there exists a parity
dominating set on the grid [4]. I hope to explain my reasoning and mathematical processes
within this paper in their entirety with completeness in order for the reader to grasp an
intuitive understanding regarding the problem.

3 Preliminaries

3.1 Basics

It becomes vitally important to understand the construction of this game in the realm
of mathematics, in order to derive a form of algorithm to solve this game for any grid
with dimensions of m, n. For our convenience, we shall define a set of all grids with these
dimensions to be Gm,n. More formally, this can be expressed as: we let Gm,n = Zm×n

2 denote
the set of m× n grids over Z2 = {0, 1}.

Definition 1. Let Gm,n be the set of m× n grids such that Gm,n = Zm×n
2 and Z2 = {0, 1}
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For our convenience, we shall also define a neighborhood of direct influence for every point.
These are the cells that will invert parity upon the cell at (i, j) being tapped. Colloquially,
we shall state that this is the von Neumann neighbourhood such that n = 1, but we shall
also define it more formally to be:

Definition 2. For every (i, j) ∈ Zm × Zn, define the von Neumann neighbourhood (neigh-
bourhood for short) Ni,j as

Ni,j = {(i, j), ((i+ 1) mod m, j), ((i− 1) mod m, j), (i, (j + 1) mod n), (i, (j − 1) mod n)}.

For the sake of clarity, we shall also include an image of a cell here, with its neighborhood
clearly displayed.

Figure 2: Cell C and its neighborhood {A,B,C,D,E}

In Figure 2, we see on the left side a cell that is being referenced, and on the right side,
we see the cells that are in its neighborhood. With these two constructs, we have all that we
need to state the puzzle, however, we shall need to define more later in order to fully solve
this and complete it.

3.2 Supergrid Function

We shall define a very useful function for our purposes, the Supergrid function. This function
will output a grid, where each cell is the parity of the sum of the cells in its neighborhood.
We shall refer to it as f : Gm,n → Gm,n, and will formally define it as the following:

Definition 3. The transition function f : Gm,n → Gm,n by

f(A)i,j =
∑

(k,ℓ)∈Ni,j

Ak,ℓ,

where A ∈ Gm,n.

The usefulness of this statement may not be inherently obvious, but we will hopefully
have convinced you of its profound purpose soon. We ask the reader to consider the act of
solving a grid.
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Figure 3: The top grids are the grids shown, which are the supergrids of the other grids

It is important to notice an interesting effect. As cells switch their parity, it operates
equivalently to tapping its associated supergrid at that point. As this property exists, one can
reasonably assert that by knowing the subgrid of any grid will provide all of the information
necessary to solve the grid. This is because one could simply flip all of the cells on the subgrid
to 0, and the supergrid of 0 is 0i. Thererfore, to find the subgrid of a grid is equivalent to
being able to solve it! Through this realization it becomes crucial to realize the patterns
that such a process exhibits. For the security of information within the readers mind, the
following, Figure 4, is a redundant, but is nonetheless important, as it serves to provide a
complete understanding of the supergrid process.

Figure 4: An ∈ G8,8 such that An+1 = f(An).

3.3 Types of Sets of Grids

Since the object of our desire has now become to discern some grid B from a given grid
A such that f(B) = A, it has become desirable to travel backwards along f . As one may
quickly notice ∀m,n ∈ N : Gm,n is finite. Therefore, it is impossible to have A0 ∈ Gm,n :
Aq+1 = f(Aq) and also have the sequence (A0, A1, ...) not repeat

ii Look closely at Figure 4,
the supergrid of the final iteration is the beginning iteration. It repeats. This immediately
becomes useful information, because for any grid in that sequence, one can simply look at
the grid before it as the subgrid. It is important to notice the interesting utility that knowing

iIt is important to note that 0 may refer to a scalar or, because of convenience, it may also refer to any
grid that is composed entirely of 0. That is to say: ∀A ∈ Gm,n : (∄p, q : Ap,q ̸= 0 ⇐⇒ A = 0)

iiSuppose that one had a sequence of A = (A0, A1, ..., Amn). Since |Gm,n| = mn, it is only possible
to select mn unique grids from Gm,n. As the number of grids in A exceeds this count, it must contain a
duplication grid.
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what grid, this will be known as the dot grid iii, produces a single dot, which will be known
as the standard basis matrix or 18,84,4

iv, as it allows us to determine any other subgrid for any
grid in G8,8. It is true that the supergrid process is linearv.

3.3.1 Solvable Sets

A solvable set of grids will be a set of grids for which all of the grids within it are solvable.
We shall proceed to prove that G8,8 is a solvable grid, in order to further understand the
process of solving these types of grid. Suppose that A ∈ G8,8, it is true that there exists
Q =

{
18,8p,q | Ap,q = 1

}
. It is also true that

∑
Q = Avi. Now, we consider the inverse of f−1

to be applied to both sides of this formulation.

f−1(
∑

Q) = f−1(A)

Since, in the case of G8,8, we can assert that ∃h ∈ N, fh = f−1. Since, ∀h ∈ Z we can assert
that fh is linear, f−1 is linear. Therefore, the previous equation can be rewritten as:∑

Ap,q=1

f−1(18,8p,q) = f−1(A)

Since we know that f−1(18,8p,q) to be D8,8
p,q ,∑

Ap,q=1

D8,8
p,q = f−1(A)

Since, we know that ∃D8,8, we can know that ∃f−1(A)∀A. Therefore, G8,8 is a solvable set.
We will note that we have directly tied the existence of Dm,n to the solvability, denoted as
the predicate S(G), of Gm,n. In particular, S(Gm,n) ⇐⇒ ∃Dm,n.

3.3.2 Null Grids and Unsolvable Sets

There are Gm,n such that ∄Dm,n, which makes them harder to solve, as one can not simply
convolute a grid by another to find its solution. However, it is not impossible, yet it is still im-
portant to be able to identify these more difficult sets, so this section will be dedicated to the
identification of these sets. S(Gm,n) ⇐⇒ ∃Dm,n ⇐⇒ (f is a bijection from Gm,n to Gm,n).
We would like to define another type of grid, that will be denoted as a null grid. A null grid
is some grid N ∈ Gm,n such that N ̸= 0 and f(N) = 0. We hesitate to define a notation for
null grids as to not overwhelm the reader with notation vii.

iiiSome side comment on notation, Dm,n
p,q is equivalent to some grid A : A ∈ Gm,n and f(Dm,n

p,q ) = 1m,n
p,q

ivThis notation is again for our convenience. Generally, 1m,n
p,q = A : A ∈ Gm,n ∧ (∀µ, ν ∈ Z : (Aµ,ν =

1 ⇐⇒ (µ, ν) = (p, q)))
vProof in the Appendix A.1
viThe addition of two grids Q,V will be defined as (Q+ V )i,j = Qi,j + Vi,j
viiWe will maintain to suggest notation for a future paper to adopt. Let Nm,n ⊂ Gm,n such that ∀N ∈

Nm,n, N ̸= 0 and f(N) = 0. It is also the case that ∄Q ∈ Gm,n, such that the following are all true: Q ̸= 0,
f(Q) = 0, and Q /∈ Nm,n.
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Theorem 1 (Null Unsolvability). The following two statements are equivalent: there exists
a null grid in Gm,n and f on Gm,n to Gm,n is not a bijection. viii

S(Gm,n) ⇐⇒ ∄N

This becomes a powerful tool of operation, as it allows for the rapid disqualification of
sets of grids with certain properties to be solvable. An example of a null grid is the following:

Figure 5: This is a null grid ∈ G5,5.

One of the most truly wonderful aspects of null grids is their ability to be tiled, and still
be valid null grids.

Figure 6: This is a tiled null grid from G5,5. It is presumed that this pattern is continued ad
infinitum.

A spectacular effect of this ability to be tiledix is that it generates null grids in all sets of
grids, which have a dimensions that are integer multiples of a null grid with integer multiples.
This creates two new important theorems:

Theorem 2. If there exists a null grid in Gm,n, then there must also exist a null grid in, for
all p, q in the set of all natural numbers, Gmq,np.

x

¬S(Gm,n)→ (∀p, q ∈ N : ¬S(Gpm,qn))

It quickly follows that its contrapositive is true:

Theorem 3. If there exists a dot grid in Gm,n, then there must exist a dot grid in Gp,q such
that p is a factor of m and q is a factor of n.

∃Dm,n → (∀p, q ∈ N : (m ∈ Np ∧ n ∈ Nq) ⇐⇒ ∃D
m
p
,n
q )

viiiProof in the Appendix A.2 under Theorem 4
ixSee appendix for other tiled null grids in Appendix A.2.1
xProof in the Appendix A.2.1 and Proof A.2.1
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3.4 Grid Operations

3.4.1 Grid Relations

Grid Equivalence Two grids A and B are said to be equivalent if for all cells in each
grid, each cell is equivalent. To be more formal:

Definition 4. If two grids are equivalent, it would mean that they are the same size. Besides
that, ∀A,B ∈ Gm,n, A = B ⇐⇒ (∀i, j : Ai,j = Bi,j)

Grid Congruence Two grids A and B are said to be congruent iff for there exists a
translation such that they are equivalent.

Definition 5. Two grids, A,B ∈ Gm,n, are congruent if and only if there exists a rigid
transformation g : Gm,n → Gm,n, such that A = g(B).

3.4.2 Unary Operations

Rigid Transformation The set of all rigid transformation function contains reflections,
rotation, and translations. First, we shall define elementary rigid transformations, T . The
function of Ti,j will be defined ∀A ∈ G as ∀x, y : (Ti,j(A))x,y = Ai+x,j+y. ∀x, y : the function
Rπ

2
(A)x,y = R90◦(A)x,y = A−y,x, the function Rπ(A)x,y = R180◦(A)x,y = A−x,−y, the function

R 3π
2
(A)x,y = R270◦(A)x,y = Ay,−x. Rx(A)x,y = Ax,−y and Ry(A)x,y = A−x,y.

T = {i, j : Ti,j} ∪ {R90◦ , R180◦ , R270◦} ∪ {Rx, Ry}

The set of all rigid transformations is T ∗.
This may seem like too much writing for an intuitive topic, but we feel as though a formal
definition would be effective.

Access Operation The value of the cell (i, j) in the grid A ∈ Gm,n, can be described as
Ai,j. ∀i, j : A mod (i,m), mod (j,n) = Ai,j.

3.4.3 Binary Operations

Addition andMultiplication These are three trivial operations, as they operate element-
wise.

Definition 6 (Addition). The sum of two grids, A,B ∈ Gm,n, can be described as: (A +
B)i,j = Ai,j +Bi,j

Definition 7 (Multiplication). The product of a grid, A ∈ Gm,n, and a scalar, a ∈ R, can
be described as: (aA)i,j = (A)i,ja

Definition 8 (Hadamard Product). The product of two grids, A,B ∈ Gm,n, can be described
as: (A⊙B)i,j = Ai,jBi,j

Definition 9 (Dot Product). The dot product of two grids, A,B ∈ Gm,n, can be described
as: A ·B =

∑
i,j Ai,jBi,j

Definition 10 (Convolution). The convolution of A by B can be described as: (A ∗B)i,j =
(A · Ti,j(B))
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4 Algorithms

4.1 Primary Algorithms

It is important to remember that knowing the dot grid of a set tells you instantly how to
solve all elements of that set.

Algorithm 1.

There is a valid assertion that we can make, which is fundamental to the operation of the
following algorithm. If and only if ∃k ∈ N : fk(1m,n) ∼= 1m,n, then there exists Dm,n, which
is equivalent to fk−1(1m,n).

1: A← 1m,n

2: N ← 0
3: while true do
4: A← f(A)
5: N ← N + 1
6: if A ∼= 1m,n then return Solvable ▷ This would mean that the previous state of A

is the dot grid, which implies the solvability of the set.
7: end if
8: if N ≥ 2mn then return Unsolvable ▷ This would imply that there must be a null

grid, as it is impossible to return to the original grid.
9: end if

10: end while

If one were to denote the previous grid from termination, must be the dot grid.

This is one of the most important algorithm throughout this paper, and we shall be using
this algorithm as a basis to speed up. One of the most important innovations for speeding
up an algorithm, is the discovery of convolutions. It is possible to quickly calculate f q, using
the factors of n. This all derives from the assertion:

f q(1m,n
0,0 ) ∗ A = f q(A)

This assertion is so powerful as it allows for the rapid creation of f q(1m,n
0,0 ). This, is because

fp(1m,n
0,0 ) ∗ f q(1m,n

0,0 ) = fp(f q(1m,n
0,0 )) = fp+q(1m,n

0,0 ). If p = q, this allows us to calculate f 2p

directly from fp. It is quite clear that this would allow us to rapidly calculate f 2h for any h.
This formula can also be used to calculate fpq, as this convolution process can be repeated
multiple times. This is important, as we are trying to find ∃k : fk(1m,n

0,0 ) = 1m,n
0,0 . We shall

assert that there exists c, which is the minimum possible value of k. This must mean that k
is an integer multiple of c. If we were to create an algorithm, that could provide fw!(1m,n

0,0 ),
then for an arbitrarily large w, one can be fairly certain that all of the factors of c are in w!.
This would mean that fw!(1m,n

0,0 ) = 1m,n
0,0 is likely true if fk(1m,n

0,0 ) = 1m,n
0,0 . Therefore, we can

test fw!(1m,n
0,0 ) to evaluate this proposition.

Algorithm 2.
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1: A← 1m,n
0,0

2: N ← 0
3: while true do
4: D ← A
5: for k = 0, k < N, k++ do
6: A← A ∗D
7: end for
8: if A ∼= 1m,n

0,0 then return Solvable
9: end if

10: if N ≥ 2mn − 1 then return Unsolvable
11: end if
12: end while

While this algorithm is effective at determining the solvability of a set, it does not ef-
fectively determine the actual value of Dm,n. Although a similar algorithm can be used to
determine that from this standpoint.

Algorithm 3.

1: A← 1m,n
0,0

2: N ← 0
3: while true do
4: AN ← A
5: D ← A
6: for k = 0, k < N, k++ do
7: A← A ∗D
8: if A ∼= 1m,n

0,0 then
9: K ← k + 1

10: for j = N - 2, j > 0, j-- do
11: E ← Aj

12: ED ← E
13: for i = 0, i < K, i++ do
14: E ← E ∗ ED

15: end for
16: H ← E
17: HD ← H
18: M ← 1
19: for i = 0, i ≤ j, i++ do
20: if (H ∗HD) ∼= 1m,n

0,0 then
21: M ←M + 1
22: Break

23: end if
24: H ← H ∗HD

25: M ←M + 1
26: end for
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27: K ← KM
28: if j = 1 then return H
29: end if
30: end for
31: end if
32: end for
33: N ← N + 1
34: AN ← A
35: if N ≥ 2mn − 1 then return Unsolvable
36: end if
37: end while

This algorithm operates through propagating backwards to find the relevant factors that
are the bare minimum to generate c. The result created by this algorithm also rapidly finds
the dot grid for each set of grids.
The following algorithm will require many seemingly arbitrary assertions, and will need to
develop new functions. One of the most important functions that we will need to develop is
g : Gm,n → Gm,n, which is equivalent to tapping all of the cells on the grid.

g(A) = f(A) + A

f(A) = g(A) + A

This algorithm also depends on the existence of C0 ∈ Gm,n and C1 ∈ Gm,n. These grids must
have the following properties: (C0)i,j + (C1)i,j = 1, ∀B ∈ Gm,n → ∃D ∈ Gm,n : g(B ⊙ C0) =
C1 ⊙ D, and ∀B ∈ Gm,n → ∃D ∈ Gm,n : g(B ⊙ C1) = C0 ⊙ D. We can also define some
functions to tap the cells of C0 and C1:

g0(A) = f(C0 ⊙ A) + A

g1(A) = f(C1 ⊙ A) + A

We can now discuss some function (g0 ◦ g1), which operates on the grid. It ends up being
true that:

(g0 ◦ g1)(A) = C1 ⊙ (g2(A) + g(A)) = C1 ⊙ (f 2(A) + f(A))

An interesting thing happens with repeated compositions of the previous functions, in turn
we can define (g0 ◦ g1)2, which operates on the grid.

(g0 ◦ g1)2(A) = C1 ⊙ (g4(A) + g2(A))

In fact,
(g0 ◦ g1)d(A) = C1 ⊙ (g2d(A) + gd(A))

Therefore if we can find an d (number of repetitions) such that g2d(A) = gd(A), that would
solve the grid. This is true because (g0 ◦ g1)d(A) = C1 ⊙ (g2d(A) + gd(A)) = C1 ⊙ (gd(A) +
gd(A)) = C1 ⊙ (0) = 0. A fascinating fact is that there must always exist an n for which

10



g2d(A) = gd(A) is true. xi For any grid that has both even sides G2m,2n, there are some
very clear values for C0 and C1 that complete these properties. (C0)i,j = i + j mod 2 and
(C1)i,j = i+ j + 1 mod 2. xii

Algorithm 4.

1: S ← 0
2: U ← 0
3: while A ̸= 0 do
4: U ← U + CS mod 2 ⊙ A
5: A← g(CS mod 2 ⊙ A) + (CS+1 mod 2 ⊙ A) ▷ This is equivalent to tapping all of the

cells in CS mod 2 ⊙ A, which is what one would do when they play the puzzle
6: S ← S + 1
7: end while
8: return U ▷ Returns the calculated subgrid

There are multiple other approaches that we have tried, and appear productive to the
solution of a variety of grids.

4.2 Supplemental Algorithms

The most trivial and unfortunate of these algorithms is the idea that we could traverse every
possible subgrid, and test it for validity as the subgrid of the relevant grid. We normally
refer to this function as Im,n : ([0, 2mn) ∩ Z)→ Gm,n. This function is naturally bijective.

Algorithm 5. To solve a grid A, this function will return the subgrid,

1: for k = 0, k < 2mn, k++ do
2: if f(Im,n(k)) + A = 0 then
3: return Im,n(k)
4: end if
5: end for

xiThis stems from the fact that g is a function that maps a finite set to another finite set. It is inevitable
that after more iterations than exist in the domain of the function that some of those iterations must repeat.
This would mean that all of the following iterations after the repeating iteration must be equivalent as the
function does not depend on any previous. Formally, suppose that ga(A) = B and that there exists b such
that gb(A) = B. We can rewrite this as: ga(A) = gb(A). which is the same as ga(A) = g(b−a)+a(A).
We could say that (b − a) = ∆a. Therefore, the following is true ga(A) = g∆a+a(A), which taking g∆a

of each side provides us, g∆a+a(A) = g2∆a+a(A). In fact, we achieve ga(A) = g∆a+a(A) = g2∆a+a(A) =
g3∆a+a(A) = ... or ∀q ∈ N : ga(A) = gq∆+a(A). If we define k > a and define ∆k = k − a, then we
can say that gk(A) = g∆k+a(A) = g mod (∆k,∆a)+a(A). We will now try to calculate the value of k for
which gk(A) = g2k(A). That can be rewritten as g mod (k−a,∆a)+a(A) = g mod (2k−a,∆a)+a. Therefore,
k − a ≡ 2k − a (mod ∆a)→ k ≡ 2k (mod ∆a)→ k ≡ 0 (mod ∆a)→ k = ∆a, which completes our initial
assertion.

xiiFor all i, j, (C0)i,j + (C1)i,j = 1 as i+ j + 1 + i+ j ≡ 1 (mod 2). 2(i+ j) + 1 ≡ 1 (mod 2) ⇐⇒ 1 ≡ 1
(mod 2).
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Unfortunately, this algorithm will likely take a long time to complete, but we considered
that it was a worth mentioning. Another approach is to use a logical process similar to Wave
Function Collapse Algorithm.

Algorithm 6. To solve a grid A ∈ Gm,n, one must only take the following steps.

1: C ← an empty grid in Gm,n ▷ This will become the subgrid of A.
2: B ← 0
3: repeat
4: B ← 0
5: for Uk,ℓ ∈ C do
6: L← 0
7: for (a, b) ∈ Nk,ℓ do
8: L← L+ Ua,b

9: end for
10: if L = Ak,ℓ (mod 2) then
11: Ck,ℓ ← 1− Ck,ℓ

12: B ← 1
13: end if
14: end for
15: until B = 0
16: return C

5 Future Research

These algorithms provided do not solve all cases, and we recommend finding more algorithms
to solve all of the cases. This can also be extended to all for more states, have the grids be
in Zq. One could also experiment with other neighborhoods, and try to generalize this entire
area of research. There is a very strange pattern in finding if a set of grids is solvable, and it
would be a fascinating as well as certainly difficult problem to try to determine a technique
to tell if a set of grids are solvable.
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Appendices

A The Supergrid Process

A.1 Proof of Linearity

Additivity: For any A,B ∈ Gm,n, we have f(A+B) = f(A) + f(B).

Proof. Immediate, as

f(A+B)i,j =
∑

(k,ℓ)∈Ni,j

(A+B)k,ℓ

=
∑

(k,ℓ)∈Ni,j

(Ak,ℓ +Bk,ℓ)

=

 ∑
(k,ℓ)∈Ni,j

Ak,ℓ

+

 ∑
(k,ℓ)∈Ni,j

Bk,ℓ


= f(A)i,j + f(B)i,j.
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Homogenity of degree 1: For any A ∈ Gm,n and c, we have cf(A) = f(Ac),

Proof. Immediate, as

cf(A)i,j = c
∑

(k,ℓ)∈Ni,j

(A)k,ℓ

=
∑

(k,ℓ)∈Ni,j

(Ac)k,ℓ

= f(Ac)i,j

Therefore the function is linear as it is additive and homogeneous of degree 1.

A.2 Null Grids and Solvability

It becomes important to prove that f is bijective. I will provide a theorem:

Theorem 4. Suppose that there exists A,B ∈ Gm,n with A ̸= B and f(A) = f(B). Then
Gm,n contains a null grid.

Proof. By the Linear Property of Supergrid Process, we have

f(A−B) = f(A) + f(−B) = f(A)− f(B) = 0,

so A−B ̸= 0 is a null grid.

Since, the implication of Theorem 4, we can state that the property of not being a bijec-
tion implies that there exists a null grid. Therefore, by the proof of Theorem 4, it implies
the verity of Theorem 1.

A.2.1 Tiled Null Grids

Figure 7: This is a tiled null grid ∈ G17,17, ∈ G31,31.

Proof of Theorem 2

Proof. Immediate, Suppose that there existed a null grid of some size, one could simply
duplicate it, and due to the property of accessing beyond a border causing a loop, it must
hold true that the next grid is also a null grid.
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