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Abstract

Markov chains are powerful tools for modeling systems that transition between distinct states
with the probability of transitioning to each state depending solely on the previous one. This
Markov property is central to applications across disciplines, including geology, biology, and
economics, as it allows for simplified, tractable analysis. In this paper, we assess the presence of
Markovian behavior in several processes by estimating a one-step transition probability matrix
and employing a chi-squared test to validate the consistency of transition probabilities over time.
Using R software, our study also examines change-point detection to identify shifts in transition
matrices, offering insights into cases where Markovian assumptions may or may not hold, such
as weather patterns, language structures, and stock price movements.
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1 Introduction

1.1 Background

Markov chains are mathematical models that describe systems undergoing transitions between a finite or
countably infinite set of states S = {s1, s2,...}. The system evolves in discrete time steps n = 0,1,2,...,
and the probability of moving to the next state depends solely on the current state, not the sequence of
previous states. This is formalized by the Markov (or Markovian) property, which states that:

P(Xn+1 = Sn+1 |Xn = SnaXn—l = Spn—1,--- 7XO = 50) = P(X7L+1 = Sn+1 |Xn - 577,)

The transition probabilities between states are summarized in a one-step transition probability matrix P,
where ijth entry p;; = P(Xn41 = j| X, = @) represents the probability that the chain transitions from
state 7 to state j in one step. Note that these probabilities are constants independent of n, and the prob-
abilities in each row must sum up to one as the chain must transition somewhere with probability one.
Markov chains are widely applicable due to their mathematical tractability and ”memoryless” property.

In this paper, we examine several processes and employ statistical methods to evaluate whether they
exhibit Markovian behavior. Demonstrating that a process adheres to the Markov property rigorously is
a formidable challenge, as it requires establishing that the property holds across sequences of states of
arbitrary lengths, such as triples, quadruples, and so on. Consequently, rather than attempting to prove
the Markov property directly, we take a more practical approach. We estimate the one-step transition
probability matrix from a subset of the data and then apply a chi-squared test to assess whether the
remaining data are consistent with the estimated transition matrix. In essence, we proceed under the
assumption that the process is Markovian, focusing specifically on testing the homogeneity of the transition
matrix. In cases where the matrix is not stationary, we also investigate potential change points, i.e., points
at which the transition matrix undergoes structural shifts.



1.2 Literature Review

Testing the homogeneity of Markov chains has widespread applications across various fields. In geology,
Markov chains are often used to model the stratigraphy of sedimentary rocks and sequence transitions
between geological formations [1,2,3]. Markov chain models in biology are frequently applied to sequence
analysis, such as DNA or protein sequences, gene expression, and population dynamics [4,5,6]. In en-
gineering, especially in fields like reliability and maintenance, Markov chains model system states over
time. Homogeneity testing can reveal if a system’s failure process remains consistent or if there are periods
of increased or decreased failure rates [7,8]. Markov chains in computer science are commonly found in
algorithmic analysis, natural language processing, and network traffic analysis [9,10]. Markov chains are
applied in medical studies to model disease progression and patient states over time [11]. In fields like
economics and social sciences, Markov chains model consumer behavior, market states, or social processes
[12,13,14].

2 Theoretical Framework

2.1 Testing for Homogeneity of Markov Chain

To test for homogeneity in a Markov chain, we assess whether the transition probabilities stay constant over
time. The process begins by estimating the one-step transition probability matrix using the first 10-20%
of the data. We then examine if the remaining data points align with a Markov chain model that follows
these estimated transition probabilities, using a chi-squared test. The details are provided below.

Consider a finite-state Markov chain with k states, say. Suppose we have a sequence of n observations
and would like to test whether the transitions between states are governed by a given one-step transition
probability matrix (p;;), 4,5 =1,...,k. For a given initial state ¢, denote by n;1, n;2, . . . 7, the number of
observed transitions to states 1,2, ..., k, respectively. Assuming that n;; +n,0+- - -+mn = ny, the expected
number of transitions is n;p;1, nipia, ..., NiPik. Under the null I;ypothesis that the transition probability
matrix is the true one, the test statistic x> = Z w
i n;pij
n(n — 1) degrees of freedom. To prove this statement rigorously, we note first that the observed transition
counts n;1, N2, . .., N, can be considered as a sample of size n; from a multinomial distribution with the
probability mass function (pmf)

follows a chi-squared distribution with
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The natural logarithm of the pmf can be written as
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Now using Stirling’s formula that states that for sufficiently large n, n! ~ v/2mnn" e~
Inn!~ £In(27) + § Inn + nlnn — n, we write

, or, equivalently,
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where the constant term depends only on n; and not n;’s. In the last equality, we used the fact

k o . o Mg — NPy o
that ijl n;; = n;. Next, we apply the transformation Z;; = 77%‘1%]‘ , from where n;; =
N Pij (1 + ) Using the fact that by Taylor’s expansion, for all small x, In(1 + z) ~ z + 22/2, we

N Dij
obtain

Z;
Inn;; = In(n;p;;) + In (1 + \/TT) ~ In(n; pi;) +
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Plugging this expression into (1), we get
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which after some simplification and dropping of higher-order terms becomes

k 2
In p(ni1, nio, ..., nik) ~ constant — Z %
Jj=1
Thus, the pmf can be approximately written as
k 2
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p(nit,ng, ... nig) = C eXP{ - Z ”} =C eXp{ - 72}
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where C' denotes a constant, and y? = Z Z} = Z ~— Y2 s a random variable that has a
X - N Pij
Jj=1
chi-squared distribution with £ — 1 degrees of freedom, the k for the n;;,j = 1,...,k, variables minus one

for the linear relation Z§:1 n;; = n;. Testing for the initial state 7 is asymptotically independent of i,
hence, the overall test statistics is

z’“:z’“: ni — nipiy)?
_ \Tbag = T Pij)

n
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which under the null hypothesis, has a chi-squared distribution with k(k — 1) degrees of freedom [15].

It is assumed that each p;; # 0 since division by zero is undefined. Therefore, for each p;; = 0, we must
reduce the degrees of freedom by one, as each p;; = 0 introduces an additional linear constraint.

2.2 Change-point Detection

Change-point detection in Markov chains focuses on identifying the point(s) at which the one-step transi-
tion probability matrix changes. Consider a simple situation where a sequence of n observations is available
and it is known that the transition matrix changed exactly once somewhere in the middle half of the ob-
servations. To estimate the precise point of change, we can use the first 20%, say, to estimate the initial
transition probability matrix, denoted as (p;;), 4,j = 1,...,k, and the last 20%, say, to estimate the final
transition probability matrix, denoted (p;;), 4,j = 1,...,k. The remaining observations between indices
m1 = 0.2n+1 and my = 0.8n — 1 are assumed to contain the unknown change point m within this interval.
Defining n;; as the transition counts of observations between m; and m, and n;‘j as those between m and



ms, we construct the likelihood function:
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where n; = nj1 + -+ + ng and nf =nf; +--- +nj. The value of m for which this likelihood function is
the largest is the maximum likelihood estimator of the change point.

3 Applications

Knowing that a process follows the Markov property lets us focus on the present state to make decisions,
without any prior context of the system, which allows for efficient modeling of complex systems. In
this section, we will explore specific cases where Markov models both are and are not applicable. From
predicting stock market behavior to determining the language of a text, we show the applicability of
Markovian models.

3.1 Testing Markov Property in Weather Change Patterns

The first example we’ll explore in testing for the Markovian property involves weather patterns. A simple
Google search reveals that weather is often cited as a common example of a Markov process in the real
world. However, in this section, we challenge this notion and conclude that weather does not actually
follow a Markov process.

We analyze one year of weather data (May 1, 2023 to April 30, 2024) from wunderground.com about Long
Beach, California, categorizing each day’s weather into one of four states: A (sunny), B (cloudy), C (foggy),
or D (raining/snowing). We estimate the transition probability matrix using the first 20% of the data, and
then we use the remaining 80% to calculate the observed frequencies, along with the expected frequencies
based on the assumption that the transition probability matrix remains constant. We obtain the following
observed and expected frequencies:

A B C D
A /138 29 10 6
Observed = B33 26 2 4
cle 7 10 1
D \ 6 3 2 6
and
A B C D
A 7119.654 56.308 7.038 0
Expected = B | 12.717 52.283 0 0 .
D 0 0 0 0

We conduct a chi-squared test comparing the corresponding non-zero entries of the observed and ex-
pected matrices, with degrees of freedom calculated as (4)(4 — 1) — the number of zeros in the expected
matrix = 12—10 = 2. This yields a chi-squared test statistic of y? = 76.364 and a corresponding p-value of
2.616 - 10~'7, which is clearly outside the acceptable range. Therefore, the two matrices differ significantly
in their corresponding elements, indicating that the process is not Markovian, contradicting the common
belief that weather follows a Markov process.



We suspected that Long Beach, California—a city that doesn’t experience snow—imight yield different re-
sults compared to a city with snowy days. To explore this, we conducted the same test with one year (July
19, 2023 to July 18, 2024) of data from wunderground.com about Detroit, MI, and found quite similar
results (x? = 19.792, df=5, and p-value=0.001). Thus, we can reasonably conclude that weather is not a
Markov process. These findings suggest that weather forecasters might benefit from taking into account
multiple previous days of weather data when making predictions for the next day.

3.2 Testing Markov Property in Consonant-Vowel Transitions in Literary Works

The next example of testing for the Markov property involves transitions between consonants and vowels
in literature. We consider two states: C for consonants and V for vowels. To determine if the sequence
of consonants and vowels in English literature follows a Markov process, we choose Ray Bradbury’s book
Fahrenheit /51. After converting the text to a plain format and substituting every consonant with a C and
every vowel with a V, we analyze the first 20% of the text to estimate the one-step transition probability
matrix. The remaining 80% of the text gives us the observed frequencies of transitions along with the
expected ones, assuming that the transition matrix persists. The observed and the expected matrices are
presented below:

C Vv

Observed = C (8330 49221
V \49219 47091

and

C 174
C (8443.422 49103.590)

Expected =
V' \49259.329  47048.67

We conduct a chi-squared test comparing the corresponding entries of the observed and expected matrices,
with degrees of freedom calculated as (2)(2 — 1) — the number of zeros in the expected matrix= 2 —0 = 2.
This yields a chi-squared test statistic of x? = 1.875 and a p-value of 0.392, which is above the 0.05 thresh-
old for rejecting the null hypothesis. Therefore, we conclude that the sequence of consonants and vowels
in English literature follows a Markovian process.

Having established that this process is Markovian, we can now compare the transition probability matrices
of various languages and utilize these matrices to identify the language of an unknown text. For instance,
we analyzed texts from four different languages to derive approximate transition probability matrices for
English, Spanish, French, and Russian. The works we selected include A Tale of Two Cities by Charles
Dickens for English, Cien Afios de Soledad by Gabriel Garcia Marquez for Spanish, Le Petit Prince by An-
toine de Saint-Exupéry for French, and Eugene Onegin by Alexander Pushkin for Russian. The estimated
one-step transition probability matrices are given below.

C |4

English = C (0.1464 0.8536
V' \0.5206 0.4794

Spanish = C (0.1544 0.8456
vV \0.7027 0.2973



C Vv

French — C (0.2284 0.7716
vV \0.6069 0.3931
C \%

Russian =

C (0.1370 0.8630)

V' \0.6681 0.3319

This process can be expanded by including a larger sample of languages and multiple texts for each lan-
guage, resulting in a more accurate and comprehensive “dictionary” that pairs each language with its
corresponding transition probability matrix. When we encounter a text in an unknown language, we can
calculate its transition probabilities and compare them to the transition probability matrices of the known
languages to identify the language of the text. For instance, we analyze the book Moby-Dick by Herman
Melville, which has the following determined transition probabilities:

C \%4

“Moby-Dicdk = C (0-1422 0.8578
v \0.5132  0.4868

The transition probabilities from Moby-Dick closely align with those of the English matrix, allowing us to
confidently conclude that it is an English text.

As a side note, this methodology could hold significant value for the military, which places a high priority
on accurately identifying the language of intercepted communications or captured foreign documents.

3.3 Testing Markov Property in Daily Stock Price Changes

Our next example of testing for the Markov property focuses on Tesla’s daily closing prices (from August
3, 2023 to August 2, 2024) found on yahoofinance.com. While this method can apply to any stock, we
use Tesla for illustration. We categorize daily price changes into three states: U (up), D (down), and C
(constant). An “up” day is one where the closing price increases by more than 1.5% from the previous day,
while a “down” day sees a decrease of more than 1.5%. “Constant” days are those that do not meet the
criteria for up or down.

Following the approach used in previous examples, we utilize the initial 20% of the data to estimate the
one-step transition probability matrix. The estimated probabilities are then applied to the remaining 80%
of the dataset to calculate the expected frequencies of state transitions. Below, we present both the ob-
served and expected transition probability matrices:

U D C
U (13 18 17
Observed = D (15 19 24)
C \19 22 31
and
U D C

U /12158 12.632 20.211
Expected = D (15.130 20.174 22.696>~
C \16.258 23.226 32.516



To assess the distance between the observed and expected matrices, we perform a chi-squared test, com-
paring their corresponding entries. The degrees of freedom are calculated as (3)(3 — 1) — the number of
zeros in the expected matrix= 6 — 0 = 6. This test yields a chi-squared test statistic of y? = 3.841
and a p-value of 0.698. Since this p-value is greater than the 0.05 threshold, it lies within the acceptable
range, indicating that the sequence of up, constant, and down days in Tesla’s stock exhibits the Markovian
property. This method can be similarly applied to other stocks to determine if the daily price changes fol-
low a Markov process, offering traders insights into next-day performance based on the previous day’s trend.

3.4 Testing Markov Property in DNA Nucleotide Sequences

The final application of testing for the Markovian property that we examine involves nucleotide sequences
within human DNA. Specifically, we use a sample of GRCh38, a detailed human reference genome de-
veloped by the Genome Reference Consortium, which we found on kaggle.com. GRCh38 serves as an
internationally accepted DNA sequence, widely utilized in genetic research. In this analysis, we define four
distinct states corresponding to the four nucleotides that constitute DNA: A (adenine), T (thymine), G
(guanine), and C (cytosine).

Once again, we use the first 20% of the DNA data points to estimate the one-step transition probabilities.
We then calculate the observed and expected matrices of transition frequencies using the remaining 80%
of the data. The resulting matrices are shown below.

A T G C
A ¢122 116 115 89
T |55 122 152 118
G112 97 114 94
C \147 122 30 97

Observed =

and

A T G c
A /118589  96.627 101.020 118.588
T | 42.881 132.542 152.034 124.746
G | 105.000 109.375 96.250  109.375 |
C \145.167 126.556  33.500  85.611

Expected =

We conduct a chi-squared test with degrees of freedom calculated as (4)(4 — 1) — the number of zeros in
the expected matrix= 12 — 0 = 12. This test yields a chi-squared statistic of ¥ = 27.297 and a p-value
of 0.007. Since this p-value is less than 0.05, it indicates that the nucleotide sequence does not satisfy the
Markov property.

4 Applications of Change-point Detection

To evaluate the effectiveness of our change-point detection method, we can simulate the trajectories of
two sequences composed of states 1, 2, and 3, each with distinct transition probabilities. After generating
these sequences, we will combine them and assess whether we can accurately identify the point at which
the change in transition probabilities occurs.

We choose the following two transition probability matrices:



1 /0.7 0.1 0.2
tml = 2 <O.1 0.5 O.4>

3 \05 02 0.3

and
1 2 3

1 /0.2 03 0.5
tm2 = 9 (0.3 0.6 0.1>~

3 \0.2 0.1 0.7

We simulate a sequence of 200 states using the transition probability matrix tml and create another
sequence of the same length based on the transition probability matrix tm2. After appending the two
sequences, we apply the theory outlined in Subsection 2.2 to estimate the point at which the change oc-
curs. We begin by using the first 20% and the last 20% of the data to approximate the one-step transition
probabilities before and after the change. Next, we analyze the middle 60% of the data to generate a set of
values for the log-likelihood function by sliding the change-point value and identifying the point at which
the log-likelihood function reaches its global maximum. In this instance, we found the value of 192, which
is quite close to the actual change-point of 201. The graph of the log-likelihood function is displayed for
the middle 240 observations, representing 60% of the total 400 observations.

InL
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Figure 1: Plot of Log-likelihood Function for the Middle Observations

Change-point detection has numerous practical applications. For instance, when examining Detroit’s
weather patterns, we can anticipate a change-point in transition probabilities occurring at the start of
the snowy season, as this marks a significant shift in weather conditions. In the 2023-2024 winter sea-
son, the first snowfall in Detroit was recorded on November 26, 2023 according to wunderground.com.
Therefore, when analyzing the weather data from wunderground.com between July 19, 2023, to July 18,
2024, we expect the change point to be around November 27, 2023. Upon conducting the analysis using
the log-likelihood function, we identified the change point on December 15, 2023, which, while slightly
later than our predicted date, is still reasonably close. This observed transition between distinct seasonal
patterns illustrates why our initial tests indicated that weather cannot be modeled as a Markov process:
the transition probabilities vary significantly with the changing seasons.



5 Future Work

To enhance the chi-squared test approach for testing homogeneity in Markov chains, future research could
incorporate the likelihood ratio test for sparse data scenarios, Bayesian methods for robustness with prior
knowledge, a non-parametric Kolmogorov-Smirnov test to avoid strict assumptions, cumulative sum and
sequential tests for real-time monitoring, and neural networks to capture complex transitions. These tests
offer opportunities to explore interesting scientific applications. Additionally, this Markov testing could be
extended to higher-order Markov processes to cover a wider range of applications.

6 Supplemental Materials

To support and extend the findings in this paper, all relevant R codes and datasets are available in
a public GitHub repository. This repository, created under the username ryrod724 and titled Testing-
for-Markovian-Property-A-Statistical- Approach-to-Transition-Matrix-Homogeneity, provides readers with
access to the full suite of resources used in this study. By exploring the code, users can better understand
the methodologies employed, including how the estimation of the transition probability matrix, chi-squared
tests, and change-point detection analyses were implemented.
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