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Abstract

Lung cancer is the leading cause of cancer mortality in the United States, with non-small
cell lung cancer (NSCLC) accounting for approximately 85% of cases. This study aims to
identify clinical and genomic risk factors associated with progression-free survival (PFS) in
advanced NSCLC patients. A cohort of 218 U.S. patients from the MSK MIND dataset was
analyzed using three survival analysis models implemented in Python. The analysis revealed
that EGFR and STK11 driver mutations and elevated derived neutrophil-to-lymphocyte ratio
(dNLR) levels were associated with increased hazard. Albumin levels were associated with a
significant decrease in hazard. PD-L1 expression and tumor mutational burden (TMB) showed
relatively modest protective effects. The Gradient Boosted Machine (GBM), a machine learning
model for survival analysis, demonstrated the highest predictive capability with a C-index of
0.701, having better-than-random performance in the testing dataset. These findings highlight
the critical role of specific clinical and genomic biomarkers in affecting NSCLC survival and
improving the accuracy of survival predictions.

Keywords: non-small cell lung cancer, progression-free survival, survival analysis with censoring,
Cox proportional hazards model, random survival forests, gradient boosting survival analysis

1 Introduction

1.1 Background

Lung cancer, the leading cause of cancer deaths, will account for an estimated 125,070 deaths
in 2024 (Siegel, Giaquinto, and Jemal 2024). Non-small cell lung cancer (NSCLC) is the most
common subtype of lung cancer, accounting for around 85% of lung cancer diagnoses (Chevallier
et al. 2021). The primary risk factor for lung cancer development is smoking, either directly or
through secondhand smoke, followed by a family history of lung cancer, and exposure to carcinogenic
substances such as asbestos (Alexander, Kim, and Cheng 2020).

Progression-free survival (PFS), the time until NSCLC stage progression or death, is often used as
an endpoint to assess therapy efficacy and identify risk factors associated with disease advancement
or death (Alexander, Kim, and Cheng 2020). This study investigates several clinical and genomic
risk factors associated with NSCLC progression.

1.2 Literature Review

In a retrospective claims-dataset analysis of 1,741 German advanced NSCLC patients observed
between 2011 and 2016, Hardtstock et al. (2020) found that treatment with targeted therapy and/or
immunotherapy was associated with a decrease in hazard — as performed by a Cox proportional
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hazards model — and significantly higher overall survival than chemotherapy alone. Braghetto et
al. (2022) used deep learning to first extract radiomics features for the prediction of 2-year overall
NSCLC survival and then found moderate discriminatory capability across several models, including
Cox proportional hazards and random survival forest models. Germer et al. (2024) found that Cox
proportional hazards and random survival forest models perform comparably and have moderate
discriminatory capability given data on sex, age, histology, and cancer stage from a German cancer
registry. Using electronic health records data, Li et al. (2022) found that Cox proportional hazards
gradient-boosted decision trees had moderate discriminatory capability and outperformed other
models in predicting PFS and overall survival, including Cox proportional hazards model, accelerated
failure time model, and survival support vector machines, and DeepSurv (a deep-learning survival
framework). Furthermore, important features from the GBM included programmed cell death-
ligand 1 expression (PD-L1), Eastern Cooperative Oncology Group performance score (ECOG),
and serum albumin. Cramer-van der Welle et al. (2021) compared real-world survival outcomes with
clinical trial results for immunotherapy using Kaplan-Meier and Cox proportional hazards model.
Cramer-van der Welle and colleagues (2021) found that although immunotherapy PFS results are
similar between clinical trial results and real-world outcomes, pembrolizumab overall survival was
significantly shorter in the real world than in the trial and was associated with increased hazard
compared to the clinical trial data.

In general, the Cox proportional hazards model is more widely used to quantify hazard ratios
between treatment and control groups in clinical trials. For instance, Soria et al. (2018) demonstrated
that in untreated EGFR-mutant NSCLC patients, osimertinib, a tyrosine kinase inhibitor, was
associated with a statistically significant reduction in hazard compared to standard EGFR tyrosine
kinase inhibitors.

1.3 Data Description

The data in this study originates from the Memorial Sloan Kettering Cancer Center’s MIND (Multi-
modal Integration of Data) initiative (Vanguri et al. 2022). The publicly available data were accessed
via cBioPortal (Cerami et al. 2012).

The data include 247 of the Center’s patients with advanced NSCLC who received PD-(L)1-
blockade therapy between 2014 and 2019 (Vanguri et al. 2022). Following the removal of patients
lacking data on the variables of interest, time-to-event analysis for progression-free survival was per-
formed on 218 patients. Categorical data were one-hot encoded for analysis. Degenerate parameters
(ALK, RET, and ROS1 drivers) were removed. Drivers (MET, BRAF, and ARID1A drivers) with-
out any statistically significant impacts on hazard were dropped. Immunotherapy treatments (e.g.,
pembrolizumab, atezolizumab, and nivolumab) were excluded from analysis due to being highly
collinear with clinically-reported PD-L1 score; PD-L1 score is used as a biomarker for determining
if and which immunotherapy are provided to patients (Vanguri et al. 2022).

Clinical biomarkers investigated in this article include ECOG (Eastern Cooperative Oncology
Group) performance status, derived neutrophil-to-lymphocyte ratio (dNLR), pack-year history, and
albumin. ECOG performance status is a 5-point score to evaluate the self-care capability of patients
and is used in clinical decision-making on systemic treatment (Azam et al. 2019). The dNLR
quantifies the balance between neutrophils and lymphocytes. Neutrophils, key components of the
innate immune system, mediate inflammation and are typically elevated during chronic inflammation
(Yang et al. 2021). In a proinflammatory environment, immature neutrophils can be released from
the bone marrow, rapidly increasing neutrophil count. Conversely, lymphocytes, part of the adaptive
immune system, tend to decrease during chronic inflammation. As a result, dNLR serves as a
potential biomarker of systemic inflammation and has been linked to poorer survival outcomes in
NSCLC (Yang et al. 2021). Albumin is an abundant circulating protein produced in the liver used as
a biomarker for nutritional status. It may also inform on systemic inflammation as albumin synthesis
is reduced by inflammation-inducing factors, notably tumor necrosis factor (TNF) (Zhang et al.
2023). Smoking, quantified by pack-year history — the number of daily packs smoked multiplied
by the number of years smoked, correlates with increased incidence of NSCLC and changes to the
tumor microenvironment (Zhao et al. 2021). A meta-analysis by Zhao et al. (2021) also reported
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higher response rates to immunotherapies among smokers than non-smokers, along with greater
overall survival and progression-free survival.

Genomic biomarkers are commonly used to assess eligibility for immune checkpoint inhibitors
and targeted therapies. Key biomarkers include PD-L1 expression and, historically, tumor muta-
tional burden (TMB) (Ettinger et al. 2022). PD-L1 expression inhibits CD8+ T lymphocyte-induced
apoptosis, protecting the tumor from the immune system (Yu et al. 2016). PD-L1 is characterized by
PD-L1 score: the proportion of a tumor sample’s expression of PD-L1 protein. A PD-L1 score above
50% was a key criterion in the KEYNOTE-024 trial, which demonstrated significantly improved
progression-free survival in advanced NSCLC patients treated with pembrolizumab immunotherapy
(Reck et al. 2016). TMB, measured using the MSK-IMPACT assay, quantifies the number of muta-
tions present in the tumor genome and serves as an additional biomarker for predicting response to
immunotherapy response (Vanguri et al. 2022).

Certain mutations in cancer driver genes can result in or aid in tumor growth and proliferation.
Several of these mutations are also clinically actionable with targeted therapy (Ettinger et al. 2022).
Two of these driver oncogenes are EGFR (HER1 or ERBB1 ) and ERBB2 (HER2 or HER2/neu),
both members of the human epidermal growth factor (HER/ERBB) family of receptor tyrosine
kinases that trigger cell replication (Chevallier et al. 2021). Activating mutations in the tyrosine
kinase domain of EGFR or ERBB2 can lead to constitutive activation of their respective signaling
pathways without ligand binding, causing uncontrolled cell proliferation and, ultimately, contributing
to oncogenesis (Chevallier et al. 2021). Approximately 19% of NSCLC patients have an EGFR
driver mutation while 1 to 3% has an ERBB2 driver mutation (Chevallier et al. 2021). EGFR
mutations are clinically actionable with targeted therapies, such as osimertinib (Ettinger et al.
2022). Previously, anti-HER2 therapies showed no clear benefit in NSCLC with overactive HER2 —
the receptor tyrosine kinase encoded by ERBB2 (Chevallier et al. 2021). However, in August 2022,
the U.S. Food and Drug Administration (FDA) granted accelerated approval for fam-trastuzumab
deruxtecan-nxki for treating metastatic NSCLC with an ERBB2 driver mutation (U.S. Food and
Drug Administration 2022).

STK11 is a driver tumor suppressor gene, and approximately 10% of NSCLC patients have
an STK11 mutation (Malhotra et al. 2022). STK11 inactivation contributes to uncontrolled cell
proliferation and metabolic changes in the tumor, leading to an altered tumor microenvironment
hostile to cytotoxic CD8+ T lymphocytes (Malhotra et al. 2022) and reducing immune surveillance.
This reduction is associated with lower tumor PD-L1 expression, leading STK11 mutations to be
the most significant molecular factor currently known to drive PD-L1 immunotherapy resistance
in NSCLC (Malhotra et al. 2022). Consequently, STK11 -mutant NSCLC is associated with worse
survival (Malhotra et al. 2022).

1.4 Time to Event Analysis

Time-to-event analysis, also known as survival analysis, investigates the duration of time until an
event of interest, such as death, occurs and the factors associated with event occurrence and timing.
The event of interest in this study is cancer progression or cancer-related death, whichever occurs
first, to investigate progression-free survival (PFS).

Particularly in cohort studies — such as the one analyzed in this report, patients may drop out
of the study or be lost to follow-up. These patients are considered right-censored (referred to as
simply ”censored” in this study) as the exact time until the event is unknown; however, it is known
that they did not experience the event up until the time they were last observed. Thus, censored
data are still valuable despite not providing the exact time of the event.

Survival analysis, incorporating censored data, seeks to estimate and model several key functions:
the survival function, S(t); hazard function, h(t); and cumulative hazard function, H(t). These
functions are defined as follows. Assume T is the random variable of the time to disease progression
or death for a patient, and let f(t), t ≥ 0, denote the probability density function (pdf) of T and

F (t) = P(T ≤ t) =

∫ t

0

f(x) dx, t ≥ 0, be the cumulative distribution function (cdf) of T . The

survival function, S(t), is the probability that the patient survives without progression until time t:
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S(t) = P(T > t) =

∫ ∞

t

f(x)dx = 1− F (t), t ≥ 0.

The hazard function h(t) is defined by the formula h(t) =
f(t)

S(t)
, t ≥ 0, and can be interpreted as

the instantaneous rate of disease progression or death, given that the patient survived up to time t.
This can be derived by writing

h(t) = P(T < t+ dt |T > t) =
P(t < T < t+ dt)

P(T > t)
≈ f(t)dt

S(t)
= h(t)dt.

The cumulative hazard function H(t) is the cumulative risk of experiencing the event until time t:

H(t) =

∫ t

0

h(x) dx.

1.5 Organization

This paper is organized into four primary sections: Introduction, Methods, Results, and Discus-
sion. In the Methods section, the three survival model frameworks evaluated are discussed: the Cox
proportional hazards model, random survival forests, and gradient-boosted machines. The Results
section covers the overall performance of each model and the important and/or statistically signifi-
cant parameters determined by each model. The Discussion section connects the parameters isolated
by the models to their clinical contexts and discusses limitations and next steps. The significance
level is set to be 0.05.

2 Methods

2.1 Cox Proportional Hazards Model

A Cox proportional hazards model, also known as a Cox model, models the hazard function given
x1, ..., xm covariates and assumes a baseline risk of h0(t) at time t:

h(t, x1, ..., xm, β1, ..., βm) = h0(t) exp(β1 x1 + · · · +, βm xm).

Notably, the model requires covariates to remain constant over time. Parameter estimation can
be performed using the maximum-likelihood approach, allowing for the determination of the most
probable values given the data.

2.2 Random Survival Forests

As introduced by Ishwaran et al. (2008), random survival forests (RSF) is an ensemble learning
technique using multiple decision trees as base learners, where the predicted hazard is the average
of the hazard predicted by terminal nodes. An advantage of RSF is the ability of the trees to learn
non-linear relationships and interactions between covariates.

The algorithm is as follows:

1. Randomly select B bootstrap samples—selecting samples with replacement—from the dataset.

2. To grow a survival tree for each sample, use the log-rank test statistic to determine the pa-
rameter that maximizes survival difference. The node is split according to this parameter such
that the survival difference is as large as possible between the two daughter nodes.
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The log-rank test statistic is calculated as follows. With the split between the two groups (left and
right daughter nodes) indicated by superscripts 1 and 2, the observed number of events at time ti
are O1i and O2i, i = 1, . . . , k. The expected number of events for group 1 is

E1
i =

N1i

Ni
Oi

where N1i represents the number of patients at risk in group 1 at time ti, and Ni is the total number
of patients at risk at time ti. The variance of O1

i is given by:

Var(O1
i ) =

N1i N2i (Ni −Oi)Oi

N2
i (Ni − 1)

.

The log-rank test statistic is defined by the formula

L =

∑k
i=1 (O1i − E1

i )√∑k
i=1 Var(O1

i )

The parameter with the largest log-rank test statistic is used to split the node.

3. Continue this process to develop the tree until a threshold for the number of events in each
terminal node is reached. Theoretically, the minimum threshold of events per terminal node
is one event. Practically, this threshold is set above 1 to reduce overfitting.

4. Compute the cumulative hazard function (CHF) for each terminal node, then average these
CHFs across terminal nodes to obtain the ensemble’s CHF.

Each case within the same node has the same CHF as others in the same node. The CHF is based
on the Nelson-Aalen cumulative hazard estimator. For each node, the CHF is estimated as follows:

Ĥ(t) =
∑

0≤ ti ≤ t

O1i

N1i
.

The ensemble CHF is estimated by taking the average of the CHFs outputted by each terminal
node. Given B terminal nodes, the final estimate of the CHF computed as:

Ĥ(t | x) =
1

B

B∑
b=1

Ĥb(t | x).

Note: The estimated CHF can be converted to an estimated survival function using the following
relation:

Ŝ(t | x) = exp
(
−Ĥ(t | x)

)
.

5. The concordance index (C-index) measures the predictive accuracy of a RSF. This index
evaluates how well the model ranks survival times, assigning higher predicted risks to shorter
survival times.

Below we outline how the C-index is computed. We look at all possible pairs of cases in the
dataset, but we exclude any pairs where: (1) one case has a censored survival time shorter than the
other case’s survival time, or (2) both cases have the same survival time unless at least one of them
experienced the event (i.e., wasn’t censored). For each eligible pair (i, j), with survival times Ti and
Tj :

• If Ti ̸= Tj (the survival times differ), add 1 if the model predicts a worse outcome for the case
with the shorter survival time.
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• If Ti = Tj and both cases experienced the events, add 1 if the predicted outcomes are equal;
otherwise, add 0.5 if the predictions differ.

• If Ti = Tj but one case experienced the event and the other was censored, add 1 if the model
predicts a worse outcome for the case with the event; otherwise, add 0.5 if the predictions differ.

The C-index is the total of these scores divided by the total number of eligible pairs. A C-index
of 0.5 suggests that the model’s predictions are no better than random chance, while a 1 indicates
perfect prediction.
To estimate the parameters of the model, the algorithm repeatedly builds decision trees on random
samples of the data and takes averages across these trees to stabilize estimates.

2.3 Gradient Boosting Machines

Gradient boosting machines (GBM) are another ensemble learning technique for survival analysis
that uses regression trees as base learners to optimize based on the partial log-likelihood function
for the Cox proportional hazards model. The partial log-likelihood function has the form:

ℓ(β) =
∑

i:δi=1

x⊤i β − log

 ∑
j∈R(ti)

ex
⊤
j β

 .

Here δi is the event indicator, that is, δi = 1 if the event occurs, and δi = 0 if the observa-
tion is censored, x⊤i =

(
xi1, xi2, · · · , xip

)
is a row-vector with covariates for case i, and β =(

β1, β2, · · · , βp

)⊤
is a column-vector of coefficients. Thus, x⊤i β = xi1 · β1 + xi2 · β2 + · · ·+ xip · βp.

Additionally, the hazard ratios ex
⊤
j β are summed across all cases in the risk set at time ti, denoted

as R(ti) in the formula above.

To maximize the partial log-likelihood function, gradient descent in function space — also known
as gradient boosting — is employed. While gradient descent traditionally optimizes parameters,
gradient boosting applies it to functions, as GBMs create an ensemble of decision trees, effectively
an ensemble of functions. In this context, the negative partial log-likelihood serves as the loss
function. The model fit is improved by using the negative gradient of this loss to maximize the
partial log-likelihood:

gi = −∂(−ℓ(β))

∂β
=

∂(ℓ(β))

∂β
= δi

xi −
∑

j∈R(Ti)
xje

x⊤
j β∑

j∈R(Ti)
ex

⊤
j β

 .

For each (m + 1)st iteration, the model adds an additional fitted regression tree, hm(x), weighted
by learning rate η:

Fm+1(x) = Fm(x) + η · hm(x).

The final model is expressed as follows:

FM (x) =

M∑
m=1

η · hm(x).

Here, M denotes the number of boosting rounds taken to build the ensemble model.
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3 Results

3.1 Cohort Clinical Characteristics

Demographic, clinical, and genomic characteristics of the advanced NSCLC cohort (n = 218) are
summarized in Figure 1. The median age was 67.5 years (range: 38 to 88 years), and the median
pack-years smoked was 28 (range: 0 to 165). Regarding driver mutations, there were 21 EGFR-
mutant cases, 16 ERBB2 -mutant cases, and 42 STK11 -mutant cases, with mutations being non-
exclusive. The median clinically reported PD-L1 score was 0 (range: 0 to 100), and approximately
26% of patients had PD-L1 scores over 50. The frequency of immunotherapy usage is provided in
the Technical Resources (5).

Figure 1: Cohort Demographic, Clinical, and Genomic Characteristics

The median progression-free survival was 2.7 months (range: 0.2 to 49.1 months). The Kaplan-Meier
estimate of progression-free survival is displayed in Figure 2.
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Figure 2: Kaplan-Meier Estimation of Overall Progression-Free Survival with 95% CI

3.2 Cox Proportional Hazards Model

Using the Cox proportional hazards model to fit main effects for ease of interpretation, clinical and
genomic parameters were analyzed to evaluate the impacts of each parameter on PFS (Table 1).
The concordance index (C-index) was 0.688 on the 20% test set.

The derived neutrophil-to-lymphocyte ratio (dNLR) was associated with a statistically signif-
icant increase in hazard (HR: 1.06, 95% CI: 1.0-1.13, p-value: 0.05), indicating a slight increase
in risk of progression or death. The PD-L1 score was associated with a statistically significant but
small decrease in hazard (HR: 0.99, 95% CI: 0.98-1.0, p-value: ≤ 0.001). Albumin showed the largest
decrease in hazard (HR: 0.36, 95% CI: 0.23-0.56, p-value: ≤ 0.001).

On the genomic side, two driver mutations, EGFR and STK11, along with the TMB score, were
linked to statistically significant impacts on hazard. Kaplan-Meier survival curves for EGFR- and
STK11 -mutant cases are provided in the Technical Resources (5). An EGFR mutation was associ-
ated with the largest increase in hazard (HR: 3.61, 95% CI: 2.01-6.5, p-value: ≤ 0.001). A mutation
in the STK11 tumor suppressor gene was associated with a statistically significant increase in hazard
(HR: 1.73, 95% CI: 1.08-2.76, p-value: 0.022). Impact TMB score showed a significant reduction in
hazard (HR: 0.96, 95% CI: 0.94-0.99, p-value: 0.002).
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Table 1: Hazard Ratios on Clinical and Genomic Parameters (C-index: 0.688)

Covariate Hazard Ratio p
EGFR Driver 3.61 (2.01-6.5) ≤ 0.001
STK11 Driver 1.73 (1.08-2.76) 0.022
ERBB2 Driver 1.36 (0.72-2.58) 0.345
ECOG 1.29 (0.92-1.81) 0.138
MSI Score 1.07 (0.99-1.16) 0.073
dNLR 1.06 (1.0-1.13) 0.05
Age 1.0 (0.98-1.02) 0.926
Pack-Year History 1.0 (0.99-1.0) 0.334
Clinically Reported PD-L1 Score 0.99 (0.98-1.0) ≤ 0.001
Impact TMB Score 0.96 (0.94-0.99) 0.002
Is Female 0.91 (0.64-1.29) 0.584
Fraction Genome Altered 0.85 (0.35-2.07) 0.719
Albumin 0.36 (0.23-0.56) ≤ 0.001

3.3 Random Survival Forests

The hyperparameter-tuned RSF achieved a concordance index (C-index) of 0.691 on the 20% test
set, slightly higher than the C-index of the main effects Cox model (C-index: 0.688).

Using permutation importance, features were ranked by their importance (Figure 3). The top
six features were further analyzed with a Cox proportional hazards model to determine their hazard
ratios (Table 2). The RSF-feature-selected Cox model achieved a C-index of 0.693 which slightly
outperformed the main effects Cox model of clinical and genomic features (C-index: 0.688), suggest-
ing that the RSF successfully performed feature selection.

Figure 3: Random Survival Forest: Features by Permutation-Based Feature Importance

Similar to the main effects Cox proportional hazards model, several parameters selected by RSF
were also found to be statistically significant (Table 2). Notably, the EGFR driver mutation was
associated with an increased hazard (HR: 3.05, p-value: ≤ 0.001). An increased dNLR was also
linked to a higher hazard, consistent with the main effects Cox model (HR: 1.09, p-value: 0.007).
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PD-L1 and TMB scores were associated with a small decrease in hazard (Clinically Reported PD-L1
Score: HR: 0.99, p-value: ≤ 0.001; Impact TMB score: HR: 0.97, p-value: 0.003). Albumin was
associated with the largest reduction in hazard (HR: 0.38, p-value: ≤ 0.001), aligning with the
findings from the main effects Cox model. The statistically significant RSF-selected features also
showed significance in the main effects Cox model, with similar hazard ratios.

Table 2: Hazard Ratios on RSF-Selected Clinical Parameters (C-index: 0.693)

Covariate Hazard Ratio p
EGFR Driver 3.05 (1.75-5.32) ≤ 0.001
dNLR 1.09 (1.02-1.15) 0.007
Pack-Year History 1.0 (0.99-1.0) 0.397
Clinically Reported PD-L1 Score 0.99 (0.98-0.99) ≤ 0.001
Impact TMB Score 0.97 (0.95-0.99) 0.003
Albumin 0.38 (0.26-0.56) ≤ 0.001

3.4 Gradient Boosting Machines

The gradient boosting machine (GBM), with regression trees as base learners and the Cox pro-
portional hazards model’s partial likelihood for loss, had a C-index of 0.701 on the 20% test set,
higher than the main effects Cox and RSF models. Features were ranked by their importance using
impurity-based feature importanceFigure 4.

Figure 4: Gradient Boosting Machine: Features by Impurity-Based Feature Importance

The six leading features identified by GBM were further analyzed using a Cox proportional haz-
ards model to assess their hazard ratios, resulting in a C-index of 0.669 (Table 3). The selected
features were largely similar to those identified by the RSF, with the notable inclusion of age and
the exclusion of the EGFR driver mutation.

The derived neutrophil-to-lymphocyte ratio (dNLR) was the only parameter associated with
a statistically significant increase in hazard (HR: 1.08, p-value: 0.019). Consistent with previous
models, PD-L1 and TMB scores exhibited statistically significant but small decreases in hazard
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(Clinically Reported PD-L1 Score: HR: 0.99, p-value: 0.001; Impact TMB Score: HR: 0.97, p-
value: 0.006). As observed in the main effects Cox models with all parameters and those selected by
RSF, albumin was associated with a statistically significant decrease in hazard (HR: 0.39, p-value:
≤ 0.001).

Table 3: Hazard Ratios on GBM-Selected Clinical Parameters (C-index: 0.669)

Covariate Hazard Ratio p
dNLR 1.08 (1.01-1.15) 0.016
Age 1.0 (0.98-1.02) 0.873
Pack-Year History 0.99 (0.99-1.0) 0.216
Clinically Reported PD-L1 Score 0.99 (0.98-0.99) ≤ 0.001
Impact TMB Score 0.97 (0.95-0.99) 0.006
Albumin 0.39 (0.26-0.58) ≤ 0.001

4 Discussion

Several key insights were identified by the survival models, including the impact of the EGFR and
STK11 driver mutations, dNLR, PD-L1, and TMB.

The EGFR driver mutation was associated with the largest increase in hazard. At the start of
the study period, the first line treatments for EGFR-mutant NSCLC were gefitinib and erlotinib,
followed by afatinib and dacomitinib in the second-line (Chevallier et al. 2021). However, these ther-
apies were shown to lead to systemic resistance, including resistance driven by T790M secondary
mutations or activation of other EGFR pathways (Chevallier et al. 2021). As the cohort studied in
this report composed of advanced NSCLC patients in whom EGFR was found to be linked with the
largest increase in hazard, all patients with a EGFR driver mutation went through multiple lines of
therapy and potentially developed systemic resistance to EGFR targeted therapy, ultimately leading
to progression or death. However, in 2017, a new drug, osimertinib, was found to be efficacious in pa-
tients who had progressed through first- and second-line treatments and who had developed T790M
secondary mutation in the AURA3 trial (Mok et al. 2017). As a result, osimertinib was approved
as a third-line treatment by the FDA. In April 2018, osimertinib became a first-line treatment for
EGFR-mutant NSCLC, following the FLAURA trial, after receiving FDA approval as a first-line
therapy (Soria et al. 2018). By this time, only two patients in the cohort with EGFR-mutant NSCLC
may have benefited from osimertinib as a first-line treatment. As a result of the advancements in
targeted therapy, the hazard observed in EGFR-mutant NSCLC may not be reflected in current
clinical practice.

Notably, both dNLR and albumin, biomarkers for systemic inflammation (Zhang et al. 2023)
(Yang et al. 2021), were significant. Systemic inflammation has broad implications on tumors by
stimulating tumorigenesis, increasing mutagenesis, promoting angiogenesis, inhibiting the adaptive
immune response, and thereby influencing tumor responses to therapy and leading to tumor growth
(Yang et al. 2021).

Higher dNLR is associated with tumor-induced chronic inflammation, as elevated neutrophil
levels secrete proinflammatory cytokines, while lymphocyte count is diminished. Further, the in-
flammatory microenvironment created by tumor cells stimulates neutrophils and perpetuates the
tumor inflammatory microenvironment (Yang et al. 2021). In a meta-analysis by Yang et al. (2021),
increased dNLR was found to predict poor PFS in European or American patients but not in Asian
patients. The elevated hazard observed in this study likely also reflects the characteristics of the
cohort studied.

Albumin was associated with the greatest reduction in hazard. Albumin levels may be reduced
due to poor nutrition, which is associated with poor prognosis in patients with NSCLC, or due to
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inflammation. Albumin synthesis is inhibited by TNF, a proinflammatory cytokine, and in systemic
inflammation, TNF may contribute to lower albumin levels (Zhang et al. 2023). Albumin is also
part of the Advanced Lung Cancer Inflammation Index and Prognostic Nutritional Index, both of
which have been associated with PFS prediction (Zhang et al. 2023).

The two biomarkers used for immunotherapy eligibility, PD-L1, and TMB, were both found to be
statistically significant. Although their hazard ratios may not seem highly protective at 0.99 (95%
CI: 0.98-1.0) and 0.96 (95% CI: 0.94-0.99), respectively, it is important to note that PD-L1 ranged
from 0% to 100% and TMB from 0 to 90.4 mutations per megabase. For instance, a patient with
a very high PD-L1 expression level of 100% would have an estimated hazard that is approximately
36% (95% CI: 13.262% - 100%) that of baseline. These results suggest that patients with sufficient
PD-L1 expression and/or TMB who are treated with immunotherapy may experience increased
PFS, consistent with the clinical evidence for immunotherapy (Alexander, Kim, and Cheng 2020).
However, it is important to note that the confidence interval for PD-L1 approaches 1, suggesting
that the observed association, while significant, may not be strongly protective in all cases. This
warrants careful consideration in clinical decision-making.

The three models demonstrated moderate predictive accuracy overall. The predictive capability
could be enhanced by the incorporation of multiomic data, including pathology and radiology data.
Cox proportional hazards model performance may be improved by including interaction terms rather
than limiting the model to main effects. Additionally, a greater sample size could better empower
the machine learning models used and potentially allow for both increased prediction accuracy and
deeper insights with the application of deep learning approaches.

5 Technical Resources and Repository

Cox proportional hazards models and Kaplan-Meier survival curves were implemented using the
lifelines library (Davidson-Pilon 2019). Random survival forests and gradient-boosted machines
were implemented using the scikit-survival library (Pölsterl 2020). The code and figures used in this
study are available at: https://github.com/osun24/mskmind-survival
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