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Abstract

Kaprekar’s routine is a mathematical process that involves iteratively sorting the digits of a
number in ascending and descending order, subtracting the smaller number from the larger one,
and repeating the process until a fixed point, known as Kaprekar constant, is reached. This essay
explores the properties of Kaprekar’s routine, its convergence behavior for different digit lengths,
and the discovery of Kaprekar constants such as 6174 for four-digit numbers. A computational
approach using Python is presented to analyze systematically the routine for 1 to 9-digit numbers,
identifying constants and cycles.
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1 Introduction

1.1 Definition of Kaprekar Constant

Kaprekar constant, 6174, exhibits a unique mathematical property. If you choose almost any four-digit
number, rearrange its digits in descending and ascending order to form two new numbers, subtract the
smaller from the larger, and repeat the process, you will eventually reach 6174 within at most seven
iterations.[1] Once 6174 is reached, the process becomes self-sustaining:

7641 − 1467 = 6174.

This iterative process is known as Kaprekar’s routine. However, there is an exception: if a number
consists of identical digits, the process terminates at zero. For example,

1111 − 1111 = 0.

Some numbers, such as 1000, initially appear to reach zero, but when leading zeros are considered, the
process continues. For instance,

1000 − 0001 = 999,

followed by

999 − 999 = 0.
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However, treating 999 as 0999 allows the routine to proceed:

9990 − 0999 = 8991,

which ultimately converges to 6174.

If we take every number from 0 to 9999, 9990 of these numbers will eventually converge to 6174 (if
we include leading zeroes). The distribution of the number of iterations needed to reach the Kaprekar
constant is shown as a bar graph in Figure 1 below. Note that it can take up to seven iterations for
some four-digit numbers.

Figure 1: Bar graph for the number of iterations until 6174 appears

[2]

1.2 Historical Note: Dattatreya Ramchandra Kaprekar

Dattatreya Ramchandra Kaprekar was born on January 17, 1905, in Dahanu, Maharashtra, India. He
developed a passion for mathematics at a young age and later studied at Fergusson University in Pune,
a prestigious institution then and now. After earning a Bachelor’s Degree in Science in 1929, he became
a school teacher in Devlali, where he worked for the next 33 years.

Despite having no formal postgraduate research, D.R. Kaprekar devoted his free time to number theory.
In 1946, he discovered that taking a four-digit number with at least two distinct digits, rearranging
its digits to form the largest and smallest possible values, and subtracting the smaller number from
the larger would eventually lead to 6174—now known as the Kaprekar constant. He published this
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discovery in 1955, along with other contributions to number theory.[3]

After retiring in 1962, D. R. Kaprekar continued teaching mathematics privately, as his pension was
insufficient. In 1975, Martin Gardner popularized Kaprekar constant, bringing it to international fame
through his ”Mathematical Games” column in Scientific American.[4] D. R. Kaprekar passed away on
June 17, 1986.

2 Kaprekar Constants Beyond Four Digits
What happens if we test Kaprekar’s routine on numbers with different digit lengths? The answer has
been well-researched in [5]. Here are my results after creating a Python program to test this.

• One-digit numbers: Subtracting the number from itself results in 0, so the Kaprekar constant in
this case is 0.

Note that for any number consisting of identical digits, regardless of its length, the Kaprekar routine
leads to zero, which, as a Kaprekar constant, is referred to as a trivial Kaprekar constant.

• Two-digit numbers: Instead of a single Kaprekar constant, there are five cyclic Kaprekar con-
stants. If you perform Kaprekar’s routine on one of these numbers, it will eventually cycle back to the
original number. For example, 81 → 63 → 27 → 45 → 09 → 81. There is no single fixed Kaprekar
constants for two-digit numbers, and there are four cyclic Kaprekar constants: 81, 63, 45, and 27.

• Three-digit numbers: Most numbers lead to 495, the Kaprekar constant for three-digit numbers.
There is one fixed Kaprekar constant and no cyclic Kaprekar constants.

The number of iterations in the Kaprekar routine for three-digit numbers is presented as a bar graph
in Figure 2 below.

• Four-digit numbers: The process generally converges to 6174, the famous Kaprekar constant for
four-digit numbers. There is one fixed Kaprekar constant and no cyclic Kaprekar constants.

• Five-digit numbers: There are 10 cyclic Kaprekar constants and no fixed Kaprekar constants.

• Six-digit numbers: There are 7 cyclic Kaprekar constants and 2 fixed Kaprekar constants.

• Seven-digit numbers: There are 8 cyclic Kaprekar constants and no fixed Kaprekar constants.

• Eight-digit numbers:; There are 10 cyclic Kaprekar constants and 2 fixed Kaprekar constant.

• Nine-digit numbers: There are 14 cyclic Kaprekar constants and 2 fixed Kaprekar constant.
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Figure 2: Bar graph for the number of iterations until 495 appears

• Ten-digit numbers: There are 16 cyclic Kaprekar constants and 1 fixed Kaprekar constant.

3 Lesser-Known Properties of Kaprekar Constants
The Kaprekar constants possess intriguing properties that are not widely known.

3.1 Divisibility by 9

Every Kaprekar constant, regardless of the number of digits, is always divisible by 9.[6] In fact, this
property holds for any number obtained by applying Kaprekar’s routine. We prove it for 4-digit num-
bers. Let ABCD be a four-digit number with digits A,B,C, and D such that A > B > C > D.
Applying Kaprekar’s routine, we obtain:

ABCD − DCBA = 1000 ·A + 100 ·B + 10 · C + D − 1000 ·D − 100 · C − 10 ·B − A

= 999 ·A + 90 ·B − 90 · C − 999 ·D = 9(111 ·A + 10 ·B − 10 · C − 111 ·D),

which is divisible by 9.

3.2 Middle Digit

For every odd-digit Kaprekar constant, the middle digit is always 9. This follows from the borrowing
process inherent in Kaprekar’s routine. When the difference between the largest and smallest possible
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permutations of the digits is computed, borrowing cascades to the middle digit. The middle-digit cal-
culation results in: 10 − 1 + (digit) − (digit) = 9.

For illustration, we present the proof for Kaprekar’s routine applied to a five-digit number. Consider a
five-digit number ABCDE with digits in descending order, A > B > C > D > E. Applying Kaprekar’s
routine results in the difference:

ABCDE − EDCBA.

Examining the rightmost digits, we see that

• The fifth digit (rightmost place) is E − A, which requires borrowing from the fourth digit since
E < A, making it 10 + E −A.

• The fourth digit becomes D − 1 − B, but again, since D < B, borrowing is needed from the third
(middle) digit, making it 10 +D − 1−B = 9 +D −B.

• The middle digit becomes C − 1 − C. Since this is negative, borrowing from the second digit is
required, leading to: 10 + C − 1− C = 9.

Thus, for any odd-digit number processed through Kaprekar’s routine, the middle digit of the result is
always 9. Note that this pattern holds for all odd-digit Kaprekar’s constants listed in Section 7.

3.3 Sum of Digits

If we sum the digits of numbers after applying Kaprekar’s routine, we observe similar patterns. We
stopped at five digits because there are multiple cases for the digits beyond five digits.

• One-digit numbers: Whenever you apply Kaprekar’s routine to a 1 digit number, this will always
equal 0 because any number subtracted by any number equals 0.

• Two-digit numbers: Whenever you apply Kaprekar’s routine to a 2 digit number with digits AB

(and 9 >= A > B >= 0), the digits of the new number, CD, will equal AB − BA. D = 10 + B − A,
and C = A−B − 1. If we C +D, we will get 9. Therefore, whenever you apply Kaprekar’s routine to
a 2 digit number, the digits of the new number will always add up to 9.

• Three-digit numbers: Whenever you apply Kaprekar’s routine to a 3 digit number with digits
ABC (and 9 >= A >= B >= C >= 0, and A is not equal to C), the digits of the new number, DEF ,
will equal ABC − CBA. F = 10 + C − A,E = 10 + B − B − 1 = 9, and D = A − C − 1. Therefore,
whenever you apply Kaprekar’s routine to a 3 digit number, the middle digit will always be 9 (as proven
in section 3.2), and the other two digits will always add up to 9 (D+F = A−C− 1+10+C−A = 9).

• Four-digit numbers: Whenever you apply Kaprekar’s routine to a 4 digit number with dig-
its ABCD (and 9 >= A >= B >= C >= D >= 0, and A is not equal to D), the digits of
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the new number, EFGH, will equal ABCD − DCBA. There are two cases. If B = C, then
H = 10 +D −A,G = 10 + C −B − 1 = 9, F = 10 +B − C − 1 = 9, and E = A−D − 1. Therefore, if
you apply Kaprekar’s routine to a number ABCD and B = C, then the second and third digits will al-
ways equal 9, and the first and fourth digits will always add up to 9 (E+H = A−D−1+10+D−A = 9).

However, if B is not equal to C, then H = 10+D−A,G = 10+C−B−1 = 9+C−B,F = B−C−1,

and E = A−D. Therefore, whenever you apply Kaprekar’s routine to a number ABCD and B is not
equal to C, then the second and third digits will always add up to 8 (F+G = B−C−1+9+C−B = 8),
and the first and fourth digits will always add up to 10 (E +H = A−D + 10 +D −A = 10).

• Five-digit numbers: Whenever you apply Kaprekar’s routine to a 5 digit number with digits
ABCDE (and 9 >= A >= B >= C >= D >= E >= 0, and A is not equal to E), the digits of
the new number, FGHIJ , will equal ABCDE − EDCBA. There are two cases. If B = D, then
J = 10 + E − A, I = 10 + D − B − 1 = 9,H = 10 + C − C − 1 = 9, G = 10 + B − D − 1 = 9,

and F = A − E − 1. Therefore, if you apply Kaprekar’s routine to a number ABCDE and B = D,
then the middle digit will always equal 9 (as proven in Section 3.1), the second and fourth digits will
always equal 9, and the first and fifth digits will always add up to 9 (F+J = A−E−1+10+E−A = 9).

However, is B is not equal to D, then J = 10 + E − A, I = 10 + D − B − 1 = 9 + D − B,H =

10 + C − C − 1 = 9, G = B − D − 1, and F = A − E. Therefore, if you apply Kaprekar’s routine to
a number ABCDE and B is not equal to D, then the middle digit will always equal 9 (as proven in
Section 3.1), the second and fourth digits will always add up to 8 (G+ I = B−D−1+9+D−B = 8),
and the first and fifth will always add up to 10 (F + J = A− E + 10 + E −A = 10).

Further investigation revealed that for six and seven digits, there are four cases; for eight and nine digits,
there are eight cases; for ten and eleven digits, there are sixteen cases; and so on. We hypothesize that
the number of cases increases exponentially as the number of digits grows.

3.4 One-Time Iteration on Numbers

If we simply perform Kaprekar’s routine only ONE time on numbers, there are some interesting results.
For every digit number, it is found that it will lead to a specific group of numbers. After applying it
multiple times will it narrow down to only the Kaprekar constants.

• One-digit numbers: Every time you apply Kaprekar’s routine to a one-digit number, it will always
equal zero, so therefore there is only one number in the specific group: 0.

• Two-digit numbers: Every time you apply Kaprekar’s routine to a two-digit number with digits
AB, the result becomes AB − BA = 10A + B − 10B − A = 9A − 9B = 9(A − B), and the maximum
A−B can equal is 9. Because of this, the result must be divisible by 9. There are ten numbers in this
specific group: 0, 09, 18, 27, 36, 45, 54, 63, 72, 81.
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• Three-digit numbers: Every time you apply Kaprekar’s routine to a three-digit number with dig-
its ABC, the result becomes ABC−CBA = 100A+10B+C−100C−10B−A = 99A−99C = 99(A−C),
and the maximum A−B can equal is 9. Because of this, the result must be divisible by 9 and cannot
be greater than 99 x 9 = 891. There are ten numbers in this specific group: 0, 99, 198, 297, 396, 495,
594, 693, 792, and 891.

• Four and five-digit numbers: For both four- and five-digit numbers, the size of numbers in the
specific group is equal to 55.

• Six and seven-digit numbers: For both six- and seven-digit numbers, the size of numbers in the
specific group is equal to 220.

• Eight and nine-digit numbers: For both eight- and nine-digit numbers, the size of numbers in
the specific group is equal to 715.

• Ten-digit numbers: For ten-digit numbers, the size of numbers in the specific group is equal to 2002.

A pattern can be found. For 2n and 2n + 1 digit numbers (where n >= 1, the size of numbers in the
specific group is the same. Table 1 below displays the selected groups for four-digit numbers.

Table 1. Specific Groups of Four-Digit Numbers

0 0999 1089 1998 2088
2178 2997 3087 3177 3267
3996 4086 4176 4266 4356
4995 5085 5175 5265 5355
5445 5994 6084 6174 6264
6354 6444 6534 6993 7083
7173 7263 7353 7443 7533
7623 7992 8082 8172 8262
8352 8442 8532 8622 8712
8991 9081 9171 9261 9351
9441 9531 9621 9711 9801

It can be easy to prove why it only leads to a specific group of numbers. Whenever Kaprekar’s routine
is applied to a number, it must be divisible by 9 (as proven in Section 3.1), and if the number of digits
is odd, then the middle digit must be 9 (as proven in Section 3.2).
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4 Proof of Existence and Uniqueness of Kaprekar Constant
6174

4.1 Proof of Existence

Among the 9000 four-digit numbers, 8991 numbers eventually reach 6174 when Kaprekar’s routine is
applied, in at most 7 iterations. This excludes the 9 numbers for which all digits are equal: 1111 through
9999. The highest possible difference obtained using Kaprekar’s routine is 9990 − 0999 = 8991 and the
smallest possible is 1000 − 0001 = 999 (excluding 0). Since the sequence of transformations is finite
and the number space is bounded, the iterations must eventually enter a cycle. We now establish that
6174 is the only number in such a cycle.

4.2 Proof of Uniqueness

Let ABCD be a four-digit number, where A,B,C,D are its digits, ordered such that 9 ≥ A ≥ B ≥
C ≥ D ≥ 0, and at least two of them are distinct (to exclude cases where Kaprekar’s routine yields
zero). Applying Kaprekar’s routine, we get ABCD −DCBA.

• The fourth digit place will be 10+D−A (because A > D), and A cannot equal D because if A = D,
then A = B = C = D, which is not possible.

• The third digit place will be C − 1−B + 10 = 9 + C −B because we had to borrow for the fourth
digit place, and B > C.

• The second digit place will be B − C − 1 because we had to borrow for the third digit place (if
B = C, then the digit will be 10 +B − C − 1 = 9 +B − C).

• The first digit place will be A−D (if B = C, then the first digit place will be A−D − 1).

The number ABCD will cycle under Kaprekar’s routine if the result can be written using the same
digits A, B, C, and D. Thus, the resulting digits 10 − D − A, 9 + C − B, B − C − 1, and A − D

(or A − D − 1 if B = C) must be a permutation of A, B, C, and D, under the conditions that
9 >= A >= B >= C >= D >= 0, and A, B, C, and D are not all equal.

4.2.1 Assuming B = C

Let’s assume that B = C. The digits of the new number will be E,F,G, and H. Using the formulas:

E = A−D − 1

F = 10− 1 +B − C = 9 (because B = C)
G = 10− 1 + C −B = 9 (because B = C)
H = 10 +D −A

We know that F = G = 9, and that E+H = A−D−1+10+D−A = 9. Because 9 is the biggest digit,
that means we can substitute A and B as 9, because they are the highest digits. Because B = C, that
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means C also equals 9. Because E+H = 9, and we know that either E or H = 9, that means the other
one = 9 - 9 = 0. So, ABCD = 9990. However, when we try to confirm this, we get 9990− 999 = 8991.
Because 8 and 1 are not in (A, B, C, D), that means this is not a Kaprekar constant. So, B must not
equal C.

4.2.2 Assuming B is not equal to C

Now, let’s assume that B is not equal to C. So, this means 9 >= A >= B > C >= D. Now we can
substitute.
E = A−D

F = B − C − 1

G = 10− 1 + C −B = 9 + C −B

H = 10 +D −A

We know that E +H = 10 and F +G = 8.

If we assume (E,H) = (1, 9), then that means that A = 9 (because A is the highest possible digit). So,
if H = 10 +D −A, then 9 = 10 +D − 9 = 1 +D, so D = 8. However, this would make B = C (either
B = C = 9, or B = C = 8). So, this is not possible.

If we assume (E,H) = (9, 1), then that means A = 9. So, if H = 10 + D − A, then 1 = 10 + D − 9,

so D = 0. This would mean that 1, which is H, must be in (B,C). We also know that 0, which is D,
must be either F or G, so that means the other one must equal 8 - 0 = 8. So, ABCD = 9810. If we try
to find F and G, we get F = 8− 1− 1 = 6, and G = 9 + 1− 8 = 2. However, (6, 8) is not equal to (0,
8) or (8, 0). So, (E,H) must not equal (9, 1).
If we assume (E,H) = (2, 8) or (8, 2), then (F,G) equals either (0, 8), (1, 7), (2, 6), (3, 5), (4, 4), or a
permutated version of these.

If we assume (F,G) = (0, 8) or (8, 0), then that means ABCD = 8820. If we try to find F and G, we
get F = 8− 2− 1 = 5, and G = 9 + 2− 8 = 3. However, (5, 3) is not equal to (0, 8) or (8, 0). So, this
is not possible.

If we assume (F,G) = (1, 7) or (7, 1), then that means ABCD = 8721. If we try to find F and G, we
get F = 7− 2− 1 = 4, and G = 9 + 2− 7 = 4. However, (4, 4) is not equal to (1, 7) or (7, 1). So, this
is not possible.

If we assume (F,G) = (2, 6) or (6, 2), then that means ABCD = 8622. If we try to find F and G, we
get F = 6− 2− 1 = 3, and G = 9 + 2− 6 = 5. However, (3, 5) is not equal to (2, 6) or (6, 2). So, this
is not possible.

If we assume (F,G) = (3, 5) or (5, 3), then that means ABCD = 8532. If we try to find F and G, we
get F = 5− 3− 1 = 1, and G = 9 + 3− 5 = 7. However, (1, 7) is not equal to (3, 5) or (5, 3). So, this
is not possible.
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If we assume (F,G) = (4, 4), then that means ABCD = 8442. However, this makes B = C, which is
not allowed. So, this is not possible. Because we went through all of the possibilities, this means (E,H)

can not be equal to (2, 8) or (8, 2).

If we assume (E,H) = (3, 7) or (7, 3), then (F,G) either equals (0, 8), (1, 7), (2, 6), (3, 5), (4, 4), or a
permutated version of these.

If we assume (F,G) = (0, 8) or (8, 0), then that means ABCD = 8730. If we try to find F and G, we
get F = 7− 3− 1 = 3, and G = 9 + 3− 7 = 5. However, (3, 5) is not equal to (0, 8) or (8, 0). So, this
is not possible.
If we assume (F,G) = (1, 7) or (7, 1), then that means ABCD = 7731. If we try to find F and G, we
get F = 7 - 3 - 1 = 3, and G = 9 + 3− 7 = 5. However, (3, 5) is not equal to (1, 7) or (7, 1). So, this
is not possible.

If we assume (F,G) = (2, 6) or (6, 2), then that means ABCD = 7632. If we try to find F and G, we
get F = 6− 3− 1 = 2, and G = 9+ 3− 6 = 6. This confirms F = 2 and G = 6. If we try to find E and
H, we get E = 7− 2 = 5, and H = 10 + 2− 7 = 5. However, (5, 5) is not equal to (3, 7) or (7, 3). So,
this is not possible.

If we assume (F,G) = (3, 5) or (5, 3), then that means ABCD = 7533. If we try to find F and G, we
get F = 5− 3− 1 = 1, and G = 9 + 3− 5 = 7. However, (1, 7) is not equal to (3, 5) or (5, 3). So, this
is not possible.

If we assume (F,G) = (4, 4), then that means ABCD = 7443. However, this makes B = C, which is
not allowed. So, this is not possible. Because we went through all of the possibilities, this means (E,H)

can not be equal to (3, 7) or (7, 3).

If we assume (E,H) = (4, 6) or (6, 4), then (F,G) either equals (0, 8), (1, 7), (2, 6), (3, 5), (4, 4), or a
permutated version of these.

If we assume (F,G) = (0, 8) or (8, 0), then that means ABCD = 8640. If we try to find F and G, we
get F = 6− 4− 1 = 1, and G = 9 + 4− 6 = 7. However, (1, 7) is not equal to (0, 8) or (8, 0). So, this
is not possible.
If we assume (F,G) = (1, 7) or (7, 1), then that means ABCD = 7641. If we try to find F and G, we
get F = 6− 4− 1 = 1, and G = 9+4− 6 = 7. This confirms F = 1 and G = 7 (this makes it (1, 7), not
(7, 1)). If we try to find E and H, we get E = 7− 1 = 6, and H = 10 + 1− 7− 4. This confirms that
E = 6 and H = 4 (this makes it (6, 4), not (4, 6). Therefore, the number 6174 (which is the Kaprekar
constant) meets all of the requirements.

If we assume (F,G) = (2, 6) or (6, 2), then that means ABCD = 6642. If we try to find F and G, we
get F = 6− 4− 1 = 1, and G = 9 + 4− 6 = 7. However, (1, 7) is not equal to (2, 6) or (6, 2). So, this
is not possible.
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If we assume (F,G) = (3, 5) or (5, 3), then that means ABCD = 6543. If we try to find F and G, we
get F = 5− 4− 1 = 0, and G = 9 + 4− 5 = 8. However, (0, 8) is not equal to (3, 5) or (5, 3). So, this
is not possible.

If we assume (F,G) = (4, 4), then that means ABCD = 6444. However, this makes B = C, which
is not allowed. So, this is not possible. Because we went through all the possibilities, this means that
only one set of conditions, where E = 6, F = 1, G = 7, and H = 4, or 6174, will work.

If we assume (E,H) = (5, 5), then this means that A = B = 5, or C = D = 5, because B must not
equal C. If C = D = 5, that means (A,B) is a permutation of (F,G), and A >= B > 5. However,
this means that A + B = F + G > 10, and it is not possible for it to equal 8. So, this means that
A = B = 5. Because E = A − D, that means 5 = 5 − D, so D = 0. Because D is in (F,G), this
means that F +G = 8, and because either F or G is 0, that means the other one is 8. So, this would
make ABCD = 8550. However, this makes B = C, which is not possible. So, (E,H) is not equal to (5, 5).

Out of all the possibilities we went through, the only number that works is 6174. So, this is proven.

5 Proof of Existence and Uniqueness of 495
Here, we will use the same method we did for Section 4 to prove that 495 is the only 3-digit Kaprekar
constant.

We can use the same proof as in Section 4.1 to prove why all numbers must eventually repeat. The
highest possible difference after using Kaprekar’s routine to three digit numbers is 891, by using 990
- 099 = 891, and the lowest possible difference we get is 99, by using 998 - 899 = 99 (excluding 0).
Because the number space is bounded, this means that after doing Kaprekar’s routine a certain amount
of times, it will eventually converge at a number, or will make a certain number repeat.

Let’s say that the number ABC is a three digit number, where 9 >= A >= B >= C, and A is not
equal to C. When we apply Kaprekar’s routine to ABC, we get ABC −CBA. Let’s call this difference
DEF , where D,E, and F are its digits. F = 10+C −A,E = 10+B−B− 1 = 9 (as proven in section
3.2), and D = A − C − 1. We also know that A must equal 9 because E = 9, E is either A,B, or C,
and 9 is the biggest one digit number.

If we assume that (D,F ) = (0, 9) or (9, 0), then that means A = B = 9, and C = 0. However,
D = A− C − 1 = 9− 0− 1 = 8, which goes against our assumption. Therefore, (D,F ) is not equal to
(0, 9) or (9, 0).

If we assume that (D,F ) = (1, 8) or (8, 1), then that means B = 8, and C = 1. However, D =

A−C − 1 = 9− 1− 1 = 7, which goes against our assumption. Therefore, (D,F ) is not equal to (1, 8)
or (8, 1).
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If we assume that (D,F ) = (2, 7) or (7, 2), then that means B = 7, and C = 2. However, D =

A−C − 1 = 9− 2− 1 = 6, which goes against our assumption. Therefore, (D,F ) is not equal to (2, 7)
or (7, 2).

If we assume that (D,F ) = (3, 6) or (6, 3), then that means B = 6, and C = 3. However, D =

A−C − 1 = 9− 3− 1 = 5, which goes against our assumption. Therefore, (D,F ) is not equal to (3, 6)
or (6, 3).

If we assume that (D,F ) = (4, 5), then that means B = 5, and C = 4. So, D = A−C−1 = 9−4−1 = 4,
and F = 10 + C − A = 10 + 4 − 9 = 5, which confirms this set. That means the number that repeats
when Kaprekar’s routine is applied to it has D = 4, E = 9, and F = 5, or 495.

If we assume that (D,F ) = (5, 4), then that means B = 5, and C = 4. However, D = A − C − 1 =

9− 4− 1 = 4, which goes against our assumption. Therefore, (D,F ) is not equal to (5, 4).

This proves that the only three-digit number that will repeat itself when Kaprekar’s routine is applied
to it is 495.

6 Applications of Kaprekar Constant
The Kaprekar constant has many lesser-known but interesting applications used for different fields of
mathematics.[7] These include the fields of cryptography, convergence analysis, recursive functions, and
possibly even more.

Kaprekar’s routine can be used for cryptography and prime numbers. For cryptography, it is very
useful because it can be used to generate pseudo-random numbers, which can be used for encryption
and decryption. Encryption and decryption can also be used for data security. This is necessary because
it prevents hackers or other people from spying on private messages. This is very important because
we do this regularly.

Kaprekar’s routine can also be used for convergence analysis and recursive functions. Because
Kaprekar’s routine is a function that eventually converges to one specific value, 6174, or the Kaprekar
constant (only for 4-digit numbers), Kaprekar’s routine can be used to analyze the convergence of other
convergent functions. This is the same for recursive functions because Kaprekar’s routine is a recursive
function.

Because the Kaprekar constant has not been researched enough, there is not a lot of data surrounding
its applications. More research should be done around its applications because they can be very useful
for other fields of math and for our daily lives.

7 Conclusion
To conclude, almost every four-digit number will eventually go to 6174 when the Kaprekar constant is
applied. The only numbers that do not converge to 6174 are numbers with the same digit, like 1111
or 2222. These numbers will always lead to 0. Zero is the only Kaprekar constant where any digit
number has 10 numbers that converge to 0. There are also other Kaprekar constants for numbers other
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than four-digit numbers, and there is more than one Kaprekar constant for five- or more-digit numbers.
If leading zeros are considered, this will change the number of digits in certain numbers, and when
Kaprekar’s routine is applied, the convergent will change depending on the number of leading zeros.

Table 2 below contains the list of all Kaprekar constants for numbers of one through nine digits. The
Python code used to produce these results can be found here:

https://github.com/MathStudent11626?tab=repositories.

Table 2. List of All Kaprekar Constants Found for 1- to 9-digit Numbers

0 09 27 45 63
81 495 6174 53955 59994

61974 62964 63954 71973 74943
75933 82962 83952 420876 549945

631764 642654 750843 840852 851742
860832 862632 7509843 7519743 7619733

8429652 8439552 8649432 8719722 9529641
43208766 63317664 64308654 64326654 75308643
83208762 84308652 85317642 86308632 86326632
86526432 97508421 554999445 753098643 762098733

763197633 844296552 863098632 864197532 865296432
865395432 873197622 874197522 883098612 954197541
964395531 965296431 976494321 4332087666 6431088654

6433086654 6433266654 6543086544 7533086643 8321088762
8332087662 8433086652 8533176642 8633266632 8653266432
8655264432 8732087622 8765264322 9751088421 9753086421
9755084421 9775084221

8 Other Curious Numbers
There are several types of numbers that have special properties. Perfect numbers are numbers that
are equal to the sum of their proper divisors (excluding the number itself). For example, 6 is a perfect
number because its divisors are 1, 2, 3, and 6, and 1 + 2 + 3 = 6 (excluding 6). Another perfect
number is 28, because its divisors are 1, 2, 4, 7, 14, and 28, and 1 + 2 + 4 + 7 + 14 = 28 (excluding
28). All known perfect numbers are even, and many people are trying to prove whether an odd perfect
number exists. This is a well-known unsolved problem in mathematics. [8]

Vampire numbers are numbers with an even number of digits that can be factored into two num-
bers, whose digits are a rearrangement of the original number. For example, 1260 is a vampire number
because 21 × 60 = 1260, and 1395 is a vampire number because 15 × 93 = 1395. [9]

Kaprekar numbers are numbers that, when squared, can be split into two parts that add up to the
original number. For example, 45 is a Kaprekar number because 45 squared = 2025, and 20 + 25 =
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45. Similarly, 99 is a Kaprekar number because 99 squared = 9801, and 98 + 01 = 99. [10]

Mersenne primes are prime numbers that can be written in the form 2n − 1. For example, 3 is a
Mersenne prime because 3 can be written as 22 − 1. Another Mersenne prime is 31 because 31 can
be written as 25−1. Mersenne primes are very rare, and there are only 53 known Mersenne primes. [10]

Armstrong numbers are numbers such that it is equal to the sum of its digits each raised to the
power of the number of digits. For example, 153 is an Armstrong number because 153 can be written
as 13 + 53 + 33. Another Armstrong number is 370 because 370 can be written as 33 + 73 + 03. [10]

Taxicab numbers are numbers such that the nth taxicab number can be written as the sum of two
cubes in n distinct ways. The most famous taxicab number is 1729. 1729 can be written as the sum of
93 + 103 = 13 + 123. This number was discovered by Srinivasi Ramanujan in 1919. [11]

These numbers each exhibit unique properties, such as the Kaprekar constant, and further research into
them could yield important insights in the field of mathematics.
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