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Abstract

This essay explores the connection between perfect numbers and Mersenne primes, going

over history and key properties with some proofs. It also includes Python code to generate the

first eight perfect numbers and concludes with a brief overview of other numbers with interesting

characteristics.
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1 Introduction

A perfect number is a positive integer whose proper divisors (all positive divisors excluding the

number itself) sum exactly to the number itself. For example, 6 is a perfect number. Its proper

divisors are 1, 2, and 3, and their sum is 1 + 2 + 3 = 6.

The deep connection between perfect numbers and Mersenne primes originates from a result

first recorded by Euclid around 300 BC [1] and later generalized by the mathematician Leonhard

Euler (1707 – 1783).[2] A Mersenne prime is a prime number of the form 2p − 1 where p itself is a

prime number. They are named after Marin Mersenne (1588 - 1648), a French polymath who studied

these special prime numbers. Euclid proved that if 2p − 1 is prime, then the number 2p−1 (2p − 1) is

a perfect number.[3] This formula provides a direct method for constructing perfect numbers using

Mersenne primes.

Over two thousand years later, Euler showed that every even perfect number must be of this form.

In other words, there is a one-to-one correspondence between even perfect numbers and Mersenne

primes. This elegant relationship narrows the search for perfect numbers to the search for Mersenne

primes. As of today, all known perfect numbers are even, and they have been found by identifying

Mersenne primes. The largest known perfect numbers correspond to the largest known Mersenne
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primes, many of which have been discovered through distributed computing projects such as the

Great Internet Mersenne Prime Search (GIMPS) that started in 1996.[4] Its official site is

https://www.mersenne.org.

2 Historical Perspective

Perfect numbers were first explicitly described in about 300 BC by Euclid in Elements, Book IX.[1]

The earliest known perfect numbers are 6, 28, 496, and 8128. Throughout antiquity, evidence

suggests that various civilizations, including the Egyptians and Romans, were intrigued by perfect

numbers, and the Greeks often attributed mystical or magical properties to them. [1]

Later, Nicomachus of Gerasa (circa 100 AD), a significant figure in the Pythagorean school,

provided one of the earliest classifications of numbers based on their divisors, known then as aliquot

parts (proper divisors). In his text Introduction to Arithmetic [5], Nicomachus classified numbers

into three categories:

• Abundant numbers: the sum of aliquot parts exceeds the number itself,

• Deficient numbers: the sum of aliquot parts is less than the number itself,

and

• Perfect numbers: the sum of aliquot parts equals the number itself.

These classifications laid the foundational concepts that influenced number theory for centuries.

3 Euclid-Euler Theorem with Proof

Theorem. An even integer N is a perfect number if and only if N = 2p−1(2p − 1) where p and

2p − 1 are both prime numbers. That is, an even number is perfect if and only if it is of the form

2p−1(2p − 1) where 2p − 1 is a Mersenne prime.
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For instance, the smallest perfect numbers 6, 28, 496, and 8128 can be written in the form 6 =

2 · 3 = 22−1(22−1), 28 = 4 · 7 = 23−1(23−1), 496 = 16 · 31 = 25−1(25−1), and 8128 = 64·127 =

27−1(27 − 1). Note that 2, 3, 5, and 7 are prime numbers, and 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31,

and 27 − 1 = 127 are Mersenne primes.

Proof: (See [6]). First, we will show that if p and 2p − 1 are primes, then = 2p−1(2p − 1) is

perfect. This is Euclid’s part of the theorem, from Elements, Book IX.

Let M = 2p − 1 denote a Mersenne prime. Then N = 2p−1 · M . The divisors of 2p−1 are

1, 2, 4, 8, · · · , 2p−1, and those of M are 1 and M . We compute the sum of divisors of N , denoted by

σ(N). Since N = 2p−1 ·M and gcd(2p−1,M) = 1, we have

σ(N) = σ(2p−1) · σ(M).

Now,

σ(2p−1) = 1 + 2 + 4 + 8 + · · ·+ 2p−1 =
2p − 1

2− 1
= 2p − 1 = M,

and

σ(M) = 1 + M.

Thus,

σ(N) = M · (1 +M) = (2p − 1)(1 + 2p − 1) = 2p(2p − 1) = 2N.

Since the sum of all divisors of N is 2N , the sum of proper divisors is 2N −N = N , and so, N is

perfect by definition.

Next, we want to show that if N is an even perfect number, then it is of the form 2p−1(2p − 1)

where 2p − 1 is a prime. This is what Leonhard Euler proved in the 18th century.

Let N be an even perfect number. Then N = 2k m where m is odd and k ≥ 1. Since N is perfect,

σ(N) = 2N = 2k+1 m. Also, since gcd(2k,m) = 1,

σ(N) = 2N = σ(2k) · σ(m) = (2k+1 − 1) · σ(m).

Hence,

(2k+1 − 1) · σ(m) = σ(N) = 2N = 2k+1 m,

or

σ(m) =
2k+1 m

2k+1 − 1
= m +

m

2k+1 − 1
.
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Further, since σ(m) is an integer, 2k+1 − 1 must be a divisor of m. Let m = (2k+1 − 1) · q for some

integer q. Substituting back into N , we obtain

N = 2k(2k+1 − 1) · q.

From here, assuming 2k+1 − 1 is a prime number,

2N = σ(N) = σ(2k) · σ(2k+1 − 1) · σ(q) = (2k+1 − 1) · 2k+1 · σ(q) = 2N · σ(q),

and so, σ(q) = 1, or equivalently, q = 1. Taking p = k + 1, we see that

N = 2p−1 (2p − 1)

where 2p − 1 is a prime.

4 Open Questions

Despite centuries of study, many fundamental questions about the existence, structure, and distri-

bution of perfect numbers remain unresolved. Here are some of the fundamental open questions

([6],[7]):

• Are there infinitely many even perfect numbers? All known perfect numbers are even,

and they correspond to Mersenne primes. Whether there are infinitely many Mersenne primes is

still unknown.[8]

• Do any odd perfect numbers exist? No odd perfect number has ever been found. [8]

• If odd perfect numbers exist, are there finitely or infinitely many of them? Beyond

existence, it’s unknown whether there could be finitely or infinitely many odd perfect numbers.[9]

• How are perfect numbers distributed? There is no clear understanding of how sparse or dense

perfect numbers are along the number line (though empirically, they become extremely rare).[10]

5 List of Perfect Numbers

The Python code in Figure 1 below outputs a list of the first eight perfect numbers, using a formula

based on prime numbers. It applies the equation 2p−1(2p − 1) where p is a prime up to 31. For

each prime p, the code checks if 2p − 1 is also prime. If it is, the corresponding perfect number is

calculated and returned. The code continues this process with the next prime value of p until it

reaches 31.
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Python Code and Output

Figure 1. Python code with generated list of eight perfect numbers and corresponding values of p.

Today, through the GIMPS project, 52 Mersenne primes are known, and thus, 52 perfect numbers

are known. They correspond to the prime numbers p p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127,

521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243,

110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917,

20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281,

77232917, 82589933, and 136279841.

6 Curious Properties of Perfect Numbers

Perfect numbers exhibit a remarkable set of mathematical properties that have intrigued mathe-

maticians for centuries. Below, we list a few of the most elegant ones. It is no wonder that, through

the centuries, scholars have linked them to philosophical and theological ideas of ”perfection”. [6]

• Every even perfect number ends either in 6 or 8. No proof will be given here. For example, the

first few perfect numbers that we generated in the previous section are: 6, 28, 496, 8128, 33550336,
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8589869056, and 137438691328.[11]

• Every even perfect number N = 2p−1(2p − 1) is triangular, that is, N can be written as the

sum of consecutive integers from 1 to 2p − 1. This is easy to show. Indeed,

1 + 2 + 3 + · · · + 2p − 1 =
2p (2p − 1)

2
= 2p−1(2p − 1) = N.

For example, 6 = 1 + 2 + 3, 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7, and 496 = 1 + 2 + · · · + 31.

• Every even perfect number N = 2p−1(2p − 1) has a binary representation consisting of p ones

followed by p− 1 zeros. This fact is a direct consequence of the expression

2p−1(2p − 1) = 2p−1(1 + 2 + 4 + · · · + 2p−1) = 2p−1 + 2p + 2p+1 + · · · + 22p−2

= 0 · 20 + 0 · 21 + · · · + 0 · 2p−2 + 1 · 2p−1 + 1 · 2p + · · · + 1 · 22p−2 = 11 . . . 1︸ ︷︷ ︸
p digits

0 0 . . . 02︸ ︷︷ ︸
p−1 digits

.

For example, 610 = 1002, 2810 = 111002, and 49610 = 1111100002.

• For every even perfect number, the reciprocals of all its divisors sum up to 2. Let d1, . . . , dk

denote all proper divisors of N , we write

1

N
+

1

d1
+

1

d2
+ · · · + 1

dk
=

∑k
i=1 di +N

N
=

2N

N
= 2.

For example,
1

6
+

1

3
+

1

2
+

1

1
=

1 + 2 + 3 + 6

6
=

6 + 6

6
= 2,

1

28
+

1

14
+

1

7
+

1

4
+

1

2
+

1

1
=

1 + 2 + 4 + 7 + 14 + 28

28
=

28 + 28

28
= 2,

and

1

496
+

1

248
+

1

124
+

1

62
+

1

31
+

1

16
+

1

8
+

1

4
+

1

2
+

1

1
=

1 + · · ·+ 248 + 496

496
=

496 + 496

496
= 2.

7 Generalizations of Perfect Numbers

In number theory, various generalizations of perfect numbers, such as multi-perfect numbers, amica-

ble numbers, and hyper-perfect numbers, have fascinated mathematicians for centuries due to their

rich algebraic structure and rarity. Below, we explore each of these classes in more detail.
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7.1 Multi-Perfect Numbers

A multi-perfect number (or k-perfect number) is a natural number N such that the sum of

its divisors (including N itself) equals k · N for some integer k > 1. For example, 6 is a 2-perfect

number, since 1 + 2 + 3 + 6 = 12 = 2 · 6, so k = 2. Similarly, 120 = 23 · 3 · 5 is a 3-perfect

number because its divisors are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, and 120, which add up to

1 + 2 + · · ·+ 120 = 360 = 3 · 120, and so, k = 3. It can also be shown that 30240 = 25 · 33 · 5 · 7 is

the smallest 4-perfect number.[11]

7.2 Amicable Pairs

Two numbers, m and n, are called an amicable pair if each is the sum of the proper divisors of

the other. Formally, σ(m) = n and σ(n) = m. For example, (220, 284) is the smallest amicable

pair. The sum of the proper divisors of 220 = 22 · 5 · 11 is σ(220) = 1 + 2 + 4 + 5 + 10 +

11 + 20 + 22 + 44 + 55 + 110 = 284, while the sum of the proper divisors of 284 = 22 · 71 is

σ(284) = 1 + 2 + 4 + 71 + 142 = 220.[12]

The first ten amicable pairs are (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368),

(10744, 10856), (12285, 14595), (17296, 18416), (63020, 76084), and (66928, 66992).[12]

7.3 Hyperperfect Numbers

Ak-hyperperfect number is a natural number N that satisfies the equation N −1 = k(σ(N)−1).

For example, 21 = 3 · 7 is a hyperperfect number with k = 2 since σ(21) = 1 + 3 + 7 = 11, and

so, N − 1 = 21− 1 = 20 and σ(N)− 1 = σ(21)− 1 = 11− 1 = 10, giving k = 2.[13]

The list of smallest hyperperfect numbers for k = 1, 2, 3, 4, 6, 10, 11, and 12 is: 6, 21, 325,

1950625, 301, 159841, 10693, and 697.[13]
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