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Abstract

Brain tumors, characterized by abnormal cell growth, are commonly detected

by magnetic resonance imaging (MRI). The primary tumor types– meningioma,

glioma, and pituitary tumor– exhibit distinct patterns on MRI scans. This work

trains a convolutional neural network (CNN) to perform multinomial classification

of brain tumors, using more than 7,000 MRI scans from the publicly available

Kaggle dataset.
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1 Introduction

1.1 Background

According to the National Cancer Institute, over 18,000 people in the United States are

projected to die from brain or other nervous system cancers in 2025. From 2015 to 2021,

the five-year relative survival rate for these cancers was just 33% [1].

A brain tumor is an abnormal mass of cells in or around the brain. If malignant, such

tumors can severely impair brain function and cognitive ability.

Historical records indicate that brain tumors were first described in ancient Egypt before

being more rigorously documented during the Renaissance era. However, it was not until

the late 19th century that tumors were first operated on successfully, and more advanced
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diagnosis techniques such as the X-ray and MRI imaging were not widely accepted until the

early and late 20th century, respectively. In the mid-1900s, chemotherapy, now a corner-

stone of cancer treatment, was introduced, and soon applied to brain tumor management

[2].

Brain tumors are broadly classified into two categories: primary and metastatic (secondary)

[3]. Although secondary tumors are more common, this research will focus on primary brain

tumors due to the greater availability and granularity of data.

Primary brain tumors originate within the brain tissue and can be further subdivided into

several major types:

• Meningioma, accounting for over 40% of all brain tumors, arises from the meninges—the

protective layers surrounding the brain and spinal cord. While typically non-malignant,

meningiomas are persistent and difficult to eliminate fully. They are also classified

based on their anatomical location within the cranial region [4].

• Gliomas are a more aggressive and heterogeneous group of tumors arising from glial

cells that support neurons. These tumors can range from low to high grade and are

often more invasive and difficult to treat surgically than meningiomas [5].

• Pituitary tumors develop in the pituitary gland at the base of the brain. Though

generally benign, they can disrupt hormonal balance and lead to serious health con-

sequences if left untreated [6].

In 2023, approximately 94,390 Americans were diagnosed with a primary brain tumor, with

nearly 19,000 deaths recorded. In 2024, gliomas accounted for 80% of malignant brain tu-

mors, meningiomas represented over 25% of benign cases, and pituitary tumors comprised

16% of all primary brain tumors [7].
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1.2 Literature Review

Extensive literature has been covered on convolutional neural networks, several of which

feature tumor-related datasets. Techniques from such literature have been adapted and

modified for this study, and many notable examples of such reports are worth highlighting.

For instance, Tiwari et al. [8] used a CNN with four convolution layers, one fully

connected layer, and one classification layer to classify 224 x 224 pixel square MRI images

from a dataset of size 3264 and four classes: no tumor, meningioma, pituitary, and glioma.

Their model runs with 30 epochs and a batch size of 32, uses a categorical cross entropy

loss function, and achieves an accuracy in training of 99%.

Kibriya et al. [9] proposed a 13-layer CNN, classifying 3064 MRI images known to corre-

spond with a tumorous patient further into their specific grouping: meningioma, pituitary,

or glioma. Their model achieved 97.2% accuracy on the same database, but validation was

also performed on a separate database, verifying model robustness.

Jaspin et al. [10] employed a multi-class CNN designed for feature extraction on the

Brain Tumor Image Segmentation (BRATS) dataset from 2015, coupled with data from the

Figshare data repository. Their model demonstrated low complexity and low output from

the loss function, retaining an average accuracy of 97.5% between experiments performed.

Mukkapati et al. [11] performed a 5-class classification of MRIs from four datasets: the

reference image dataset for assessing therapeutic response, REMBRANDT, TCGA-LGG,

and a set of TI-weighted contrast enhanced pictures. The 5 classes were meningioma,

pituitary, glioma, no tumor, and metastatic (secondary) tumor, and performance of the

25-layer CNN was evaluated at 92.98% accuracy.

Singh et al. [12], on several publicly available datasets, compared CNN models for var-

ious purposes: binary classification, multinomial classification, and severity classification,

achieving 99.74%, 96.26%, and 99.18% accuracies respectively. They employed Hybrid Par-

ticle Swarm Grey Wolf Optimization techniques rather than a grid search technique like

the previous paper used.

Gautam et al. [13] achieved 93% accuracy with a 6-layer CNN on the BRATS 2020

dataset for 3-class classification, where all 2475 brain scans in the study hosted a tumor of

one of three types: meningioma, glioma, or pituitary adenoma. Here, principal component

analysis was utilized to optimize model features, as well as for reduction of each image’s

256 x 256 square pixel dimensions to 128 x 128 square pixels.

Kumar et al. [14] compiled a 25-layer CNN model that achieved a maximum accuracy

of 86.23% when used with an Adam optimizer for hyperparameter tuning. Their model
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was trained from two public datasets aggregating on 3580 total MRI images. However, its

classification task was one of the most precise in the studied literature, forecasting not only

tumor type but grade (severity).

Lastly, Ozkaraca et al. [15] delivered a hybrid CNN architecture from the VGG16Net

model and the dense-layer structure of DenseNet, both of which implement convolutional

neural networks themselves. Through k-fold cross-validation, they identified a consistent

success rate of 95-97% for the modified CNN, far surpassing a basic CNN architecture and

transfer learning techniques.

1.3 Scope and Structure of the Study

This paper describes the first in a series of three research studies focused on predictive

modeling for brain tumor data. Here, we explore convolutional neural networks (CNNs),

starting with their theoretical foundations, followed by practical applications and a discus-

sion of results. The second paper will address brain tumor diagnostics using biomedical

data, while the third will examine survival prediction using approaches such as the Cox

model, parametric regressions, and random survival forests. The latter two papers will be

published in subsequent issues of this journal.

2 Multinomial Classification with Convolutional Neu-

ral Networks

2.1 Theoretical Framework

A convolutional neural network (CNN) is a type of neural network designed to extract

patterns from data structured as matrices, most commonly images, and classify those data

based on the identified patterns. In this study, we employ a CNN for multiclass classifi-

cation of various brain tumor types using MRI images. While CNNs are predominantly

used for image analysis, they are also applicable to other data types such as video and audio.

Here we outline the theoretical steps for fitting a convolutional neural network. A more

detailed explanation can be found in [16].
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To build a CNN, we first prepare and label a training dataset. Each MRI scan is assigned

a numeric label corresponding to its class: 0 for no tumor, 1 for glioma, 2 for meningioma,

and 3 for pituitary tumor. A model is then initialized with random parameters and trained

using gradient descent, an optimization technique that iteratively updates the model to

minimize prediction error. This process continues until the CNN can accurately classify

new, unseen images.

Specifically, if layer Ln has m nodes and layer Ln−1 has k nodes, with n representing the

number of layers in the CNN and m = 4 for our case, then we can represent:

Ln,j = Wj,1Ln−1,1 +Wj,2Ln−1,2 + · · ·+Wj,kLn−1,k +Bj

where W and B denote weights and biases that, when aggregated with the connected node

from a previous layer, provide the value for the jth node in the nth layer. We can use this

to compute the initialized cost function for our network, namely,

C0 = −
m∑
j=1

yj log(Ln,j)

where yj denotes the desired value at the jth output node. For backpropagation to tran-

spire, we must minimize this cost function using the gradient with respect to each weight

and bias, propagating backward in the neural network and repeating this across all layers

for our entire training set. Specifically, by the chain rule, we have that

∂C0

∂Ln−1,i

=
m∑
j=1

∂R−1(Ln,j)

∂Ln−1,i

· ∂Ln,j

∂R−1(Ln,j)
· ∂C0

∂Ln,j

where R is the ReLU function discussed later in this section, and i ∈ [1, k]. This result

enables us to modify the matrix of weights and biases, feeding through the network based

on the signs and relative magnitudes of each component in the gradient. Of course, this

just shows an example for the cost from a single training image, and by repeating this fine-

tuning process and averaging the cost gradient across the training set, we can successfully

attain the local minimum.

With this refined model, post-validation, we can analyze the accuracy on a test set of

images. Specifically, for our testing set, and more generally, for all images run through a

complex CNN, each image must first be converted into matrix form. An image is split into

three matrices for red, green, and blue coloring, and each pixel in the image is assigned
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three unique 8-bit values from 0 to 255 corresponding to the relative intensities of the red,

green, and blue components comprising the matrix entries.

Next, the image is run through a series of hidden layers, composed of repeated structures

of convolution and pooling layers, and scaled to hyperparameters that match the intent of

the study. The purpose of the convolution layer is to identify certain characteristics of the

image, called features, which are crucial to pattern recognition. This is done by the use of

many kernels, each of which is a matrix weighted by the specific pattern that it attempts

to discern, of dimensions orders of magnitude lower than that of the original images. A

kernel, with three channels for red, green, and blue, identifies patterns through the dot

product, extracting higher values in sections that reflect its designated pattern and lower

values for those that don’t.

After these kernels are employed to identify horizontal lines, vertical lines, diagonals, and

more in the image, the products are then passed through an activation function such as a

rectified linear unit (or ReLU for short). This function is necessary because it introduces

non-linearity into the network, handling the complex relationship between the input and

output nodes that cannot be accounted for by a linear combination of kernel products.

That is, if an activation function were not introduced, then the neural network could be

condensed into a single layer consisting of repeated matrix multiplication, resulting in a

nullified increase in accuracy for each additional layer.

The final layer in this repeating structure is known as the pooling layer, which reduces the

dimensionality of the input matrix while preserving the number of channels using a two-

dimensional filter for condensation. This effectively reduces the complexity of the entries

in each node of the layer, producing a model robust to overfitting or minor image distortion.

By replicating this repeated structure of convolution, activation, and downscaling, the neu-

ral network picks up on nuances in the image structure, resulting in refined classification.

Finally, the output of the hidden network is flattened into a single dimension, intercon-

nected with all potential relative weights of the final outputs, and standardized into a

probability distribution using the softmax function. Rather than aggregation, which may

occur in binary regression algorithms, these probabilities simply produce the model’s most

confident prediction for the class of tumor in the image.
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2.2 Analysis and Results

We performed four-class classification on a public brain tumor MRI dataset from Kaggle

with 7023 images. The dataset was pre-split into training and testing images, and brain

scans were labeled. Between 80-85% of the total data was used for testing, depending on

the class of tumor, while the remaining data was allocated for testing.

We used the Keras API in Python with the standard categorical cross-entropy loss func-

tion and an Adaptive Moment Estimation (Adam) optimizer to create the model, executing

with 15 epochs on the training data and computing accuracy on pre-split testing images.

The hyperparameters of our model are depicted pictorially in Figure 1 below.

Figure 1: CNN model layers and their parameters.

Our model performed relatively well with respect to the time to run the code, which was

approximately 72 minutes total with 277 seconds per epoch. The average accuracy of the

model was 93%. Unlike for binary classification problems, further quantifying our results

by means of a receiver-operating characteristic curve is not effective or purposeful, and

such calculations have been deliberately omitted. Instead, we analyze and account for the

regular inaccuracies that occur during repeated execution of the model.

The most frequent error made was incorrectly classifying an MRI image of a meningioma

patient as not having meningioma. One such instance where this was detected is shown in
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Figure 2 below.

Figure 2: Confusion matrix summarizing CNN model’s performance on test set.

To visualize possible sources of this error, we showcase three randomly selected MRI images

from the test set which were incorrectly classified as having non-meningioma classes. The

images and their true classes are displayed in Figure 3 below.
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Figure 3: Sample erroneous predictions on test images and their true classes.

The mischaracterization as glioma can be attributed primarily to location, as glioma tumors

may form near the meninges region of the brain. This would make it difficult for the model

to differentiate patterns on the basis of location alone. Although this can occur for pitu-

itary tumors as well when a meningioma congregates near the sella turcica compartment

of the brain, the natural error from signal effects of scans coupled with the homogeneous

morphology of the tumors most plausibly gives rise to inaccurate classification of that kind.

Lastly, the misclassification as “no tumor” can be explained by the low color contrast of

some meningioma tumors with respect to the surrounding gray matter in the MRI, cou-

pled with the smaller size of tumors considered as benign or low-grade. Conversely, it is

worth noting that the label that was classified most accurately and precisely by the model

was“pituitary”. This tumor class was the most strongly defined by placement of the tumor

in the brain, indicating a strong feature importance of location for CNN-based classification

models.

3 Summary and Conclusion

In summary, multinomial classification was performed on an MRI dataset containing over

7,000 images using a convolutional neural network (CNN) implemented in Python. The

architecture included three convolution-pooling layer sets and a ReLU activation function.

The model achieved a test accuracy of approximately 93%, demonstrating strong and con-
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sistent performance.

We also found that the most frequent type of misclassification was a type I error (false

positive) under the null hypothesis that the tumor corresponds to a meningioma. This

is likely due to similarities in location or morphology shared with other primary tumors.

Such errors may be mitigated in post-analysis through careful image inspection and by

incorporating additional diagnostic metrics (e.g., tumor severity or size).

Our model’s accuracy could potentially be increased by incrementing model hyperparame-

ters, which would consequently increase the run time. Additionally, implementing a larger

training dataset would help offset the effects of bias or overfitting, having a similar effect

on accuracy. These results have instrumental applications in tumor classification and the

fields of radiology and oncology, offering a supportive tool for verifying diagnostic accuracy

in clinical settings.

4 Future Work

Following a classification task, one natural next step would be to perform localization and

instance segmentation of tumors within the MRI image dataset. This can be approached

at two levels: drawing bounding boxes and delineating contour lines. While the former is

simpler, it offers less precision; both methods, however, can be implemented using convo-

lutional neural networks (CNNs). Furthermore, alternative models such as the Segment

Anything Model (SAM) may be explored, with their prediction accuracies compared on a

testing set.

5 Supplemental Materials

The code developed for this paper is available in this GitHub repository. To access the

data file directly on Kaggle, use this link. To run the code directly, use this Google Colab

link.
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[15] O. Özkaraca, O.İ. Bağrı açık, H. Gürüler, F. Khan, J. Hussain, J. Khan, and U.E.

Laila. Multiple brain tumor classification with dense cnn architecture using brain mri

images. Life, 13(2):349, 2023.
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