
Early Prediction of Sepsis Onset: Evaluating Supervised Machine

Learning Techniques

Ava Berenji

Harvard-Westlake School, Los Angeles, CA

Abstract

Early detection of sepsis in intensive care units (ICUs) is critical for timely inter-

vention and improved patient outcomes. This study evaluates the performance of

supervised machine learning models in predicting sepsis onset using ICU electronic

medical record (EMR) data. Four distinct feature engineering strategies were com-

pared: Baseline Data (first recorded values), 24-Hour Baseline (first values within

24 hours of admission), 24-Hour Summary (baseline plus summary statistics), and

6-Hour Summary (summary statistics from the first 6 hours). This study provides

insight into the impact of modeling choices on sepsis prediction performance and high-

lights practical considerations for the early detection of sepsis.

Keywords: sepsis prediction, machine learning, ICU, electronic health records (EHR), interpretable mod-

els, feature engineering, missing data imputation, comparative analysis

1 Introduction

1.1 Background

Sepsis is a life-threatening condition defined by the Sepsis-3 criteria as organ dysfunction resulting from a

dysregulated host response to infection [1]. It remains a leading cause of global morbidity and mortality,

particularly in intensive care units (ICUs). In 2017, sepsis affected an estimated 49 million people and

contributed to 11 million deaths worldwide, accounting for nearly 20% of all global deaths [2]. Within

the United States, it is implicated in one out of every three hospital deaths and imposes a substantial

economic burden: U.S. hospital costs related to sepsis totaled $24 billion in 2013, the highest for any

medical condition [3].

Timely recognition and treatment of sepsis are critical. Delays in therapy have been consistently

associated with worsened outcomes; each hour of delay in antimicrobial administration increases mortality

by approximately 4% [4]. Despite its urgency, sepsis diagnosis is challenging and lacks a definitive gold

standard. In ICUs, diagnosis typically relies on clinical evaluation and the Sequential Organ Failure

Assessment (SOFA) score, which assesses dysfunction in six organ systems. However, by not considering

the complete feature set or temporal patterns embedded within EHR data, SOFA often misses crucial yet

subtle signs of early physiological deterioration [1].

In recent years, machine learning (ML) models have shown promise in identifying sepsis risk by learning

complex patterns from large electronic health record (EHR) datasets [5]. ML methods offer the potential to
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complement clinical judgment and outperform traditional scoring systems by integrating diverse physiologic

variables to predict sepsis onset earlier and more accurately than traditional scoring systems, enabling

earlier intervention. However, a key barrier to clinical implementation of ML models is the high variance

between methodologies across different studies. Thus, this study aims to evaluate the potential and best

practices for ML as a tool for early sepsis detection in the ICU.

1.2 Literature Review

Early detection of sepsis is a critical challenge in clinical care, as timely intervention significantly reduces

mortality. Traditional rule-based scoring systems, such as SIRS [6], SOFA [7], and qSOFA [8], use fixed

thresholds to flag at-risk patients. While clinically interpretable, these systems do not account for patient

heterogeneity, neglect temporal trends, and fail to leverage the growing availability of electronic health

record (EHR) data.

In recent years, machine learning (ML) has emerged as a promising alternative. ML models can learn

complex, nonlinear relationships directly from EHR data, even in the presence of missing values and

high dimensionality. Unlike static scores, ML models can be continuously retrained as new data become

available, enabling adaptability and personalization. Numerous studies report that ML-based models

outperform rule-based systems across key metrics such as sensitivity, specificity, and AUROC [9–11].

Many modern approaches focus on dynamic prediction, updating predictions hourly as new data arrive.

This approach allows for the prediction several hours (often 4 to 8) prior to clinical diagnosis. A notable

example is the 2019 PhysioNet/Computing in Cardiology Challenge, which asked participants to predict

sepsis onset each hour using ICU time-series data [12].

Modeling techniques range from classical algorithms to deep learning. Ensemble tree models like Ran-

dom Forest, XGBoost, and LightGBM consistently perform well, balancing predictive power and inter-

pretability [13]. Gradient boosting, in particular, was central to effective models such as InSight [14],

RoS [10], and all top five ranked PhysioNet challenge submissions [15–19]. To help ML models capture

temporal dynamics, all these teams incorporated rolling window features, which summarize past data in

a fixed-length window trailing the current hour, although window size varied among teams. Some studies

combine multiple models to improve predictive performance. For instance, Mitra and Ashraf found that

a simple ensemble, created from linear averaging of predictions from logistic regression, multilayer percep-

tron, XGBoost, and Random Forest, outperformed any individual model in AUROC [20]. Deep learning

approaches, especially LSTMs, CNNs, and hybrid models, are increasingly common and excel at modeling

raw time-series data, but often at the expense of interpretability [21].

Despite these advances, the field of sepsis prediction has considerable variability in methodology, which

limits comparability across studies [22]. Differences exist in prediction forecasting (e.g. 4h, 6h, 12h,

etc.), labeling criteria (e.g. Sepsis-2, Sepsis-3, SIRS, ICD-10 codes), dataset usage (e.g., MIMIC III,

PhysioNet, private databases), and data preprocessing [13]. Missing values are handled through strategies

ranging from exclusion or median/mean imputation to K-Nearest Neighbors (kNN), Multiple Imputation

by Chained Equations (MICE), and forward/backward filling [23]. Tree-based models can natively handle

missingness, and some studies, such as the fifth-place PhysioNet team, have found that imputation can

degrade performance, opting instead for the native handling [19]. Others encode missingness directly as

features, such as measurement frequency or binary missing flags [16–19].

Feature engineering strategies also vary widely. Common predictors include vital signs (e.g., respiratory

rate, temperature, MAP, heart rate), labs (e.g., WBC, lactate, creatinine), and basic demographics (gender,

age) [13]. Common hand-crafted features include summary statistics over sliding windows (e.g., mean,
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min, max, variance) [16–18], clinical ratios (e.g., shock index) [15], and first-order deltas [16, 18]. SHapley

Additive exPlanations (SHAP) values are widely used for model interpretability and feature importance

estimation [13].

In contrast to real-time prediction, some studies have explored static, early-window models that predict

whether a patient will eventually develop sepsis. For instance, Faisal et al.’s CARS model used logistic

regression on only first-recorded vitals and labs at Emergency Room (ER) admission, achieving AUROCs

of 0.73–0.81 [24]. Similarly, Kuo et al. developed a shallow artificial neural network trained on one-hourly

snapshots of EHR data from the ICU [PhysioNet 2019] to classify future sepsis onset up to 40 hours in

advance, achieving AUROCs ranging from 0.76 to 0.82 despite intentionally preserving high missingness to

simulate real-world ICU data [25]. While less complex and directly actionable, these studies demonstrate

that meaningful early warning signals are present well in advance of sepsis diagnosis, highlighting the

potential for training predictive models specifically on fixed, early-window data.

While ML models hold considerable promise for early sepsis prediction, there are many practical barriers

to their clinical integration, including data availability, generalizability, overfitting, and notably, the high

variance in methodologies across different studies [25, 26].

To address these gaps, the present study systematically benchmarks multiple interpretable ML models

using static, early ICU data derived from the PhysioNet 2019 dataset. By comparing multiple preprocessing

strategies and algorithm types, we seek to clarify the impact of different modeling decisions on model

performance, thus informing the best practices for early sepsis prediction under a controlled environment.

2 Data Preprocessing

The data from this study were obtained from the PhysioNet/Computing in Cardiology Challenge 2019 [12],

a publicly available collection of Electronic Medical Record (EMR) data from 40,336 ICU patients across

two distinct hospitals: Beth Israel Deaconess Medical Center (Hospital A), and Emory University Hospital

(Hospital B). These data, collected over the past decade with institutional review board approval, contain

40 clinical variables for each patient, binned into hourly values (see Table 11 for description of all variables,

and Figures 4, 5, and 6 in the Appendix for histograms).

Variables include 8 vital signs, 26 laboratory values, and 6 demographic variables. In the full dataset,

2,932 patients (7.3%) developed sepsis during their ICU stay, while 37,404 (92.7%) did not.

The binary target variable, SepsisLabel, was defined based on the time of sepsis onset. For patients who

developed sepsis during their ICU stay, the label was assigned a value of 1 for all times at and after the

time six hours before the onset of sepsis. Otherwise, the label was 0. Without modifying the dataset, we

corrected for this offset in code so that all sepsis onset times accurately reflected the true clinical timing.

The onset time (tsepsis) followed Sepsis-3 clinical criteria, defined as the earlier of (i) clinical suspicion

of infection and (ii) evidence of organ failure (a two-point increase in the SOFA score).

2.1 Cleaning and Feature Selection

Initial data cleaning involved the exclusion of 17 features based on redundancy, irrelevance, or excessive

missingness.

Four features (EtCO2, Bilirubin direct, Fibrinogen, TroponinI) were removed due to excessive missing-

ness, having never been recorded in over 75% of patients. Hematocrit (Hct) was excluded due to redundancy

with Hemoglobin (Hgb), which was retained as the more informative predictor.
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An additional 11 features (Base Excess, Oxygen Saturation (SaO2), Aspartate Aminotransferase (AST),

Alkaline Phosphatase, Calcium, Chloride, Magnesium, Phosphate, Potassium, Partial Thromboplastin

Time (PTT), and Total Bilirubin (Bilirubin total)) were also excluded based on clinical redundancy, irrel-

evance to early-onset sepsis prediction, or high missingness.

Furthermore, the binary indicators for Unit1 and Unit2 were combined into a single categorical variable,

Unit. Patients in Unit 1 were labeled ’1’, while those in Unit 2 were labeled ’2’, and instances where both

were missing were assigned ’0’ to denote an unknown unit.

Finally, three time-dependent identifiers (Hour, ICULOS, HospAdmTime) were removed. This yielded

a baseline feature set of 21 predictors: HR, O2Sat, Temp, SBP, MAP, DBP, Resp, FiO2, Platelets, Hgb,

WBC, Lactate, Creatinine, BUN, Glucose, pH, PaCO2, HCO3, Age, Gender, and Unit.

2.2 Feature Engineering

To evaluate the impact of feature engineering choices on model performance, we constructed four dis-

tinct feature sets, each characterized by different training/prediction windows and engineered features, as

summarized in Table 1.

Table 1: Summary of Feature Engineering Strategies

Strategy Time Window Features Population / Prediction

Horizon

1. Baseline

Data

First recorded

value (restricted to

pre-onset data)

21 clinical variables All patients; predict sepsis during

entire post-baseline ICU stay

2. 24-Hour

Baseline

First 24 hours of

ICU admission

21 clinical variables All patients with ≥ 25h of data,

septic patients must have

tsepsis > 24h; predict sepsis after 24h

3. 24-Hour

Summary

First 24 hours of

ICU admission

3 demographics;

baseline, count, delta,

range of 18 clinical

variables

Same as Strategy 2.

4. 6-Hour

Summary

First 6 hours of

ICU admission

3 demographics;

Baseline, count, delta,

SD of 7 vitals; Baseline,

count of 11 lab values

Septic patients with 7 ≤ tsepsis ≤ 24

and ≥ 7h of data, nonseptic patients

with ≥ 24h of data; predict onset

within the first 7 to 24h

Baseline Data. This strategy used only the first recorded value for each variable, restricted to pre-onset

measurements to avoid temporal leakage. When trained using listwise deletion (removing any patient with

a missing value), only 5,831 patients remained (4,996 non-septic (85.7%), 835 septic (14.3%)). The listwise

deletion approach allows us to see how the models would perform on the subset of patients with complete

data, though we acknowledge this is not a clinically realistic scenario.

24-Hour Baseline and Summary. These strategies incorporated all data from the first 24 hours of

ICU admission. To ensure that septic patients had sufficient pre-onset data, only those with tsepsis > 24

hours were included. After the inclusion criteria, 30,983 patients remained (29,247 nonseptic (94.4%), 1,736

septic (5.6%)). The 24-Hour Summary strategy added engineered features: baseline value, count (number
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of measurements), delta (last minus first value), and range, helping capture trends in patient physiology

rather than a single snapshot in time.

6-Hour Summary. This strategy focused on very early prediction, aiming to predict sepsis within the

first 7 to 24 hours after admission (a window excluded by the 24-hour models). Patients needed at least

7 hours of data available to be included, and nonseptic patients required at least 24 hours of ICU data to

ensure definitive labeling. This strategy included 31,725 patients (30,572 nonseptic (96.4%), 1,153 septic

(3.6%)).

Features were derived from the first 6 hours of ICU data. For vital signs, we computed baseline (first

recorded value), count (number of measurements), delta (last minus first recorded value), and standard

deviation. For laboratory variables, only baseline and count were used due to infrequent early draws.

Standard deviation was chosen over range to better capture variability during the short window.

3 Methods

This study employed supervised machine learning to predict sepsis onset using ICU electronic medical

record data. Four modeling strategies were evaluated: Baseline Data (first recorded values), 24-Hour

Baseline (first recorded values ≤ 24h from admission), 24-Hour Summary (24-Hour Baseline with summary

statistics added), and 6-Hour Summary (data from the first 6 hours, with summary statistics).

3.1 Model Types

We implemented seven classifiers: Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light

Gradient Boosting Machine (LightGBM), k-Nearest Neighbors (kNN), Naive Bayes (NB), Support Vector

Machine (SVM), and Logistic Regression (LR). Artificial Neural Networks (ANNs) were initially considered

but excluded due to comparatively poor performance and high training time.

For datasets with native missingness (unimputed), only tree-based models (RF, XGBoost, LightGBM)

were evaluated due to their ability to handle missing values without imputation.

3.2 Data Splitting and Validation

Each dataset was randomly split into 80% training and 20% testing sets. Model selection and hyperpa-

rameter tuning were performed via 5-fold cross-validation on the training set. Only SVM radial kernel

results were reported, as that was consistently the best-performing kernel. Logistic regression used the

logit link function. The value of k for the kNN model was optimized independently within each fold. Final

performance metrics were reported on the held-out test set. No data from the test set was used during

model training, feature selection, or imputation to prevent data leakage.

3.3 Missing Value Handling and Scaling

Because many models required complete data, we imputed missing values using the median of each feature,

calculated from the training set only to avoid data leakage.

For models sensitive to feature scale (kNN, SVM, Logistic Regression), continuous predictors were

standardized using Z-score normalization with the training set’s mean and standard deviation to avoid

data leakage.
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We also evaluated tree-based models (Random Forest, XGBoost, LightGBM) with their native miss-

ingness handling to assess whether missingness patterns themselves were informative.

Baseline models were initially trained with listwise deletion to explore model performance on a fully

observed reference dataset, though this is not clinically practical and ignores the fact that missingness can

itself be predictive. This benchmark allows comparison with imputed and native-missingness approaches.

3.4 Handling Class Imbalance

The raw dataset was highly imbalanced, with nonseptic patients far outnumbering septic ones. Thus, the

training set was balanced using random undersampling at a 1:1 septic-to-nonseptic ratio. The test set

remained imbalanced to reflect clinical prevalence. Class weights were tested but not adopted, as they did

not generalize well across models.

3.5 Evaluation Metrics

All models were evaluated using area under the receiver operating characteristic curve (AUROC), the

area under the precision-recall curve (AUPRC), sensitivity, specificity, precision, F1-score, and accuracy.

Confusion matrices were calculated at a threshold of 0.5.

3.6 Theoretical Framework

This study evaluated seven commonly used supervised learning algorithms: Random Forest (RF), eXtreme

Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), k-Nearest Neighbors (kNN),

Naive Bayes (NB), Support Vector Machine (SVM), and Logistic Regression (LR). A detailed overview of

the theory underlying these classifiers, including their mathematical formulations, can be found in standard

textbooks such as [27] and [28].

3.6.1 Random Forest

The Random Forest (RF) algorithm is an ensemble method based on bagging (bootstrap aggregating),

where multiple decision trees are trained on different bootstrap samples: random samples of the training

data with replacement. At each node split, a random subset of features is considered to reduce the

correlation between trees. For binary classification, the final prediction is made by majority vote across all

trees, helping reduce model variance and overfitting.

Before training, three main hyperparameters must be set: minimum node size, number of trees, and

number of variables sampled at each split.

Feature importance is commonly assessed using two metrics. Mean Decrease in Impurity (MDI) mea-

sures how much impurity decreases when the given feature is excluded. Mean Decrease in Accuracy (MDA)

measures the drop in accuracy when values of a feature are randomly permuted.

3.6.2 XGBoost

Extreme Gradient Boosting (XGBoost) is an ensemble method that implements gradient boosting with

performance optimizations. It builds an additive model by sequentially fitting decision trees, where each

tree is trained to correct the residual errors of the current ensemble. Unlike traditional boosting algorithms

that only use the first derivative (gradient) of a loss function, XGBoost also considers the second derivative

(curvature). The prediction function is updated iteratively:
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f̂(x) = f̂0(x) +

B∑
b=1

λf̂b(x)

where f̂0(x) is the initial estimate (often set to a constant), f̂b(x) is the fitted weak-learner at iteration b,

and λ is the learning (shrinkage) rate that controls how much each new tree contributes to the final model.

The final model f̂(x) is the sum of these weighted learners.

Key hyperparameters include: number of trees B, the number of splits k, and the learning rate λ.

3.6.3 LightGBM

Light Gradient Boosting Machine (LightGBM) is an ensemble method that also implements gradient boost-

ing, designed for faster training and lower memory usage on large datasets. Like XGBoost, it builds an

additive model by sequentially training decision trees to reduce residual errors. The prediction function is

updated iteratively:

f̂(x) = f̂0(x) +

B∑
b=1

λf̂b(x)

where f̂0(x) is the initial estimate, f̂b(x) is the fitted weak learner at iteration b, and λ is the learning

(shrinkage) rate.

LightGBM introduces two key innovations to improve speed and scalability: Gradient-based One-Side

Sampling (GOSS) and Exclusive Feature Bundling (EFB). GOSS accelerates training by concentrating

learning on the data points the model struggles with the most. EFB reduces dimensionality by bundling

mutually exclusive features (usually binary), enabling efficient learning on high-dimensional datasets.

LightGBM grows trees leaf-wise rather than level-wise, selecting the leaf with the highest loss reduction

at each step. This can lead to deeper, more complex trees that improve accuracy but may increase the risk

of overfitting.

Key hyperparameters include: number of trees B, the number of splits k, and the learning rate λ.

3.6.4 Naive Bayes

The Naive Bayes (NB) algorithm is a probabilistic classifier based on Bayes’ Theorem. For a response

variable Y and predictors X = (X1, X2, · · · , Xk), Bayes’ Theorem yields:

P (Y |X) =
P (X|Y )P (Y )

P (X)
.

The model ”naively” assumes that all features are conditionally independent given the class label,

allowing P (X|Y ) to factor as

k∏
i=1

P (Xi|Y ).

For each observation, the model computes the conditional probability of each class given the predictors

and assigns the observation to the class with the highest probability.

The probability P (Y = y) is estimated from the frequency of the classes in the training set. For

categorical predictors, P (Xi = x|Y = y) is estimated as empirical proportions, whereas for continuous

predictors, the conditional distribution is assumed to be normal (Gaussian), with the mean and variance

estimated from the data.
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3.6.5 Support Vector Machine

The Support Vector Machine (SVM) algorithm is a margin-based classifier that aims to find the optimal

hyperplane that separates data points of different classes. For binary classification, SVM seeks to maximize

the margin: the distance between the closest data points (called support vectors) and the separating

hyperplane. A larger margin generally improves generalizability to unseen data.

Mathematically, for input features xi and labels yi ∈ {−1,+1}, the linear SVM solves the primal

formulation:

min
w,b

1

2
∥w∥2 subject to yi(w · xi + b) ≥ 1 ∀i,

where w is the normal vector to the hyperplane and b is the bias term.

To handle these constraints, SVM introduces Lagrange multipliers αi ≥ 0, leading to the alternate dual

formulation:

max
α

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj⟨xi,xj⟩,

subject to
N∑
i=1

αiyi = 0, αi ≥ 0.

This formulation depends only on the inner products of the training points, making it straightforward to

extend to nonlinear decision boundaries.

Nonlinear relationships between features and class labels can be captured using different kernels, which

replace the inner product ⟨xi,xj⟩ with a kernel function K(xi,xj) = ϕ(xi) · ϕ(xj) in the dual formulation.

In this study, the radial basis function (RBF) kernel was used:

K(xi,xj) = exp(−γ∥xi − xj∥2)

where γ controls the influence of each training example.

In practice, perfect separation is rare, so the soft-margin SVM introduces slack variables that allow

points to violate the margin. A regularization parameter C controls how heavily such violations are

penalized.

Key hyperparameters include the penalty parameter C and the kernel coefficient γ. These determine

the trade-off between model complexity and classification error.

3.6.6 k-Nearest Neighbor

The K-Nearest Neighbors (kNN) algorithm is a simple, non-parametric method. For binary classification,

it assigns a label to a new observation based on the majority class among its k nearest neighbors in the

training set.

To classify a new observation, the algorithm computes the Euclidean distance between the observation

and all training points. For the feature vectors x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd), the Euclidean

distance is defined as:

distance(x, y) =
√
(x1 − y1)2 + · · ·+ (xd − yd)2.

The k nearest neighbors (those points with the smallest distances) are identified, and the majority class

among them is assigned to the new point. To avoid ties, k is typically chosen to be an odd number.

The key hyperparameter is the number of neighbors k.
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3.6.7 Generalized Linear Models

The logistic model is a generalized linear model (GLM) commonly used for binary classification, where the

response variable y ∈ {0, 1}. Each GLM models the probability π = P (y = 1) as a function of predictor

variables x1, x2, · · · , xk, using a different link function to relate the linear predictor β0 + β1 + · · · + βkxk

to the probability π. The logistic model uses the logit link:

log

(
π

1− π

)
= β0 + β1x1 + · · ·+ βkxk.

Here, π/(1 − π) represents the odds of y = 1. Solving for π, we can write the fitted logistic regression

model as:

π̂ =
exp(β̂0 + β̂1x1 + · · ·+ β̂kxk)

1 + exp(β̂0 + β̂1x1 + · · ·+ β̂kxk)
.

4 Applications and Results

This section presents the performance metrics of various machine learning models across different data

preprocessing and feature engineering strategies. The results are organized by data preparation approach:

Baseline Data, 24-hour Baseline, 24-hour Summary, and 6-hour Summary. Performance is evaluated using

Accuracy, Area Under the Receiver Operating Characteristic Curve (AUROC), Area Under the Precision-

Recall Curve (AUPRC), Sensitivity, Specificity, Precision, and F1 Score.

4.1 Baseline Data

This strategy utilizes only the first available value for each feature (restricted to pre-onset data). The tables

compare three different techniques for handling missing values: Listwise Deletion, Median Imputation, and

Retained Missing Values (for tree-based models).

Table 2: Model Performance on Baseline Data Using Listwise Deletion

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.5666 0.6864 0.2449 0.7437 0.5370 0.2117 0.3296

XGBoost 0.5910 0.6553 0.2204 0.6264 0.5851 0.2014 0.3045

LightGBM 0.5947 0.6659 0.2191 0.6664 0.5836 0.2110 0.3195

kNN 0.6280 0.6532 0.2125 0.5832 0.6355 0.2109 0.3096

Naive Bayes 0.6880 0.6524 0.2067 0.4251 0.7320 0.2100 0.2809

SVM (radial) 0.5689 0.6761 0.2287 0.7090 0.5454 0.2069 0.3202

LR (logit) 0.5910 0.6553 0.2204 0.6264 0.5851 0.2014 0.3045

Table 2 presents the performance of models using listwise deletion. Random Forest demonstrated the

highest AUROC (0.6864), AUPRC (0.2449), Sensitivity (0.7437), Precision (0.2117), and F1 Score (0.3296).

Naive Bayes recorded the highest Accuracy (0.6880) and Specificity (0.7320), albeit with lower Sensitivity.
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Table 3: Model Performance on Baseline Data Using Median Imputation

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.6844 0.7743 0.2129 0.7404 0.6800 0.1536 0.2544

XGBoost 0.7106 0.7730 0.2140 0.6969 0.7116 0.1593 0.2593

LightGBM 0.7042 0.7750 0.2144 0.7147 0.7034 0.1589 0.2599

kNN 0.7445 0.6964 0.1530 0.5085 0.7630 0.1440 0.2244

Naive Bayes 0.7814 0.6916 0.1365 0.4294 0.8090 0.1499 0.2221

SVM (radial) 0.7020 0.7261 0.1667 0.6357 0.7072 0.1455 0.2368

LR (logit) 0.6563 0.6693 0.1400 0.5883 0.6616 0.1199 0.1992

Table 3 details the performance of models using median imputation. The decision tree models (Random

Forest, XGBoost, and LightGBM) showed very similar performance in terms of AUROC (around 0.775)

and AUPRC (around 0.21). Random Forest had the highest sensitivity (0.7404) by a large margin, though

its specificity was lower than the gradient boosting models. XGBoost maintained the highest Precision

(0.1593), and Naive Bayes maintained the highest Accuracy (0.7814) and Specificity (0.8090).

Table 4: Model Performance on Baseline Data Using Retained Missing Values

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.6624 0.7104 0.1714 0.6463 0.6637 0.1310 0.2178

XGBoost 0.7249 0.7992 0.2727 0.7323 0.7243 0.1725 0.2791

LightGBM 0.7170 0.7986 0.2727 0.7320 0.7158 0.1680 0.2733

Table 4 highlights the performance of tree-based models that can natively handle missing values. XG-

Boost outperformed the other models across nearly all metrics, achieving the highest Accuracy (0.7249),

AUROC (0.7992), AUPRC (0.2727), Sensitivity (0.7323), Specificity (0.7243), Precision (0.1725), and F1

Score (0.2791). LightGBM also performed very well, matching XGBoost’s AUPRC, while Random Forest

lagged behind both XGBoost and LightGBM on all metrics. This difference is expected, as Random For-

est typically doesn’t handle missing values as effectively as gradient-boosting methods like XGBoost and

LightGBM without first undergoing explicit imputation.

4.2 24h Baseline

Table 5: Model Performance on 24-Hour Baseline Data Using Median Imputation

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.6601 0.7156 0.1320 0.6503 0.6607 0.1021 0.1764

XGBoost 0.6725 0.7068 0.1316 0.6317 0.6750 0.1063 0.1819

LightGBM 0.6657 0.7080 0.1233 0.6469 0.6668 0.1033 0.1782

kNN 0.7480 0.6580 0.1048 0.4562 0.7653 0.1035 0.1688

Naive Bayes 0.7772 0.6606 0.0989 0.3917 0.8000 0.1043 0.1646

SVM (radial) 0.6873 0.6864 0.1154 0.5852 0.6934 0.1017 0.1733

LR (logit) 0.6449 0.6469 0.1086 0.5869 0.6486 0.0926 0.1599
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Table 5 summarizes the performance of models utilizing median imputation for the 24-hour baseline fea-

tures. Random Forest achieved the highest AUROC (0.7156), AUPRC (0.1320), and Sensitivity (0.6503).

XGBoost obtained the highest Precision (0.1063) and F1 Score (0.1819). Naive Bayes recorded the highest

Accuracy (0.7772) and Specificity (0.8000), although its AUROC and AUPRC were much lower relative to

the tree models.

Table 6: Model Performance on 24-Hour Baseline Data Using Retained Missing Values

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.6411 0.6620 0.1008 0.5841 0.6444 0.0889 0.1542

XGBoost 0.6801 0.7326 0.1407 0.6744 0.6804 0.1114 0.1911

LightGBM 0.6764 0.7304 0.1376 0.6691 0.6768 0.1095 0.1881

When tree models retained missing values for the 24-hour baseline features (Table 6), both XGBoost and

LightGBM demonstrated strong, similar performance. XGBoost achieved the highest Accuracy (0.6801),

AUROC (0.7326), AUPRC (0.1407), Specificity (0.6804), Precision (0.1114), and F1 Score (0.1911). Light-

GBM was slightly behind across most metrics, whereas Random Forest consistently lagged behind both

LightGBM and XGBoost.

4.2.1 Feature Importance Analysis

(A) XGBoost: Global SHAP beeswarm plot show-

ing the top 15 features ranked by mean SHAP value.

(B) LightGBM: Global SHAP beeswarm plot show-

ing the top 15 features ranked by mean SHAP value.

Figure 1: Global SHAP feature importance visualizations for (A) XGBoost and (B) LightGBM models

trained on 24-hour baseline features. Higher absolute SHAP values indicate greater contribution to the

model’s predictions.

Global SHAP beeswarm plots (Figure 1A-B) show that baseline FiO2, Creatinine, Lactate, and Unit

consistently ranked among the most influential predictors across both XGBoost and LightGBM models.
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Predicted sepsis risk increased with higher FiO2, and, to a lesser extent, with higher creatinine and lactate

levels. A high Unit value, which indicated admission to the Surgical ICU, strongly decreased predicted

sepsis risk.

4.3 24h Summary

Table 7: Model Performance on 24-Hour Summary Data Using Median Imputation

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.6927 0.7446 0.1644 0.6749 0.6938 0.1188 0.2020

XGBoost 0.7003 0.7457 0.1576 0.6674 0.7024 0.1206 0.2042

LightGBM 0.7039 0.7473 0.1646 0.6551 0.7069 0.1202 0.2031

kNN 0.7753 0.7009 0.1336 0.4888 0.7928 0.1262 0.2005

Naive Bayes 0.7711 0.6578 0.1020 0.3885 0.7945 0.1038 0.1637

SVM (radial) 0.7067 0.7438 0.1567 0.6576 0.7097 0.1217 0.2054

LR (logit) 0.7139 0.7372 0.1578 0.6311 0.7190 0.1207 0.2025

Table 7 presents the performance of models using median imputation. kNN achieved the highest Accuracy

(0.7753) and Precision (0.1262), while Naive Bayes showed the highest Specificity (0.7945). Random

Forest achieved the highest Sensitivity (0.6749), while LightGBM yielded the highest AUROC (0.7473)

and AUPRC (0.1646). SVM achieved the highest F1 Score (0.2054) and overall performed similarly to

many of the decision tree models. Logistic regression (LR) also performed competitively with an AUROC

of 0.7372 and an F1 Score of 0.2025.

Table 8: Model Performance on 24-Hour Summary Data Using Retained Missing Values

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.7041 0.7445 0.1645 0.6594 0.7068 0.1210 0.2044

XGBoost 0.7011 0.7501 0.1634 0.6735 0.7029 0.1217 0.2061

LightGBM 0.7051 0.7508 0.1658 0.6613 0.7078 0.1215 0.2052

Table 8 presents the performance of tree-based models when natively handling missing values. Although

XGBoost and LightGBM had very similar performance, LightGBM was the top-performing model in most

metrics, achieving the highest Accuracy (0.7051), AUROC (0.7508), AUPRC (0.1658), and Specificity

(0.7078). XGBoost achieved the best Sensitivity (0.6735), Precision (0.1217), and F1 Score (0.2061).

Random Forest performed slightly lower than both LightGBM and XGBoost in this scenario.
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4.3.1 Feature Importance Analysis

(A) XGBoost: Global SHAP beeswarm plot show-

ing the top 15 features ranked by mean SHAP value.

(B) LightGBM: Global SHAP beeswarm plot show-

ing the top 15 features ranked by mean SHAP value.

Figure 2: Global SHAP feature importance visualizations for (A) XGBoost and (B) LightGBM models

trained on 24-hour summary features. Higher absolute SHAP values indicate greater contribution to the

model’s predictions.

Global SHAP beeswarm plots (Figure 2A-B) show that FiO2 count, baseline Creatinine, and Lactate count

consistently ranked among the most influential predictors across both XGBoost and LightGBM models.

Predicted sepsis risk increased with higher FiO2 and Lactate measurement counts, and, to a lesser extent,

with higher creatinine levels.

4.4 6h Summary

Table 9: Model Performance on 6-Hour Summary Data Using Median Imputation

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.6499 0.7088 0.0819 0.6523 0.6498 0.0676 0.1225

XGBoost 0.6571 0.7038 0.0831 0.6516 0.6573 0.0689 0.1246

LightGBM 0.6584 0.7001 0.0841 0.6474 0.6589 0.0687 0.1241

kNN 0.7423 0.6499 0.0631 0.4428 0.7540 0.0656 0.1143

Naive Bayes 0.7564 0.6601 0.0647 0.4259 0.7692 0.0670 0.1157

SVM (radial) 0.6522 0.7025 0.0839 0.6498 0.6523 0.0679 0.1229

LR (logit) 0.6599 0.6812 0.0780 0.6091 0.6618 0.0654 0.1181

Table 9 summarizes the performance of all models when median imputation was applied. Naive Bayes

achieved the highest Accuracy (0.7564) and Specificity (0.7692). The decision tree models all showed

similar performance. Random Forest recorded the best AUROC (0.7088) and Sensitivity (0.6523), while
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LightGBM achieved the top AUPRC (0.0841). XGBoost achieved the highest Precision (0.0689) and F1

Score (0.1246) by a small margin.

Table 10: Model Performance on 6-Hour Summary Data Using Retained Missing Values

Model Accuracy AUROC AUPRC Sensitivity Specificity Precision F1 Score

Random Forest 0.6400 0.6979 0.0794 0.6472 0.6397 0.0653 0.1186

XGBoost 0.6598 0.6965 0.0830 0.6263 0.6610 0.0670 0.1210

LightGBM 0.6571 0.7000 0.0827 0.6360 0.6579 0.0674 0.1219

Table 10 presents the performance of the tree-based models capable of natively handling missing values.

XGBoost achieved the highest Accuracy (0.6598), AUPRC (0.0830), and Specificity (0.6610). LightGBM

recorded the best AUROC (0.7000), Precision (0.0674), and F1 Score (0.1219). Random Forest attained

the highest Sensitivity (0.6472).

4.4.1 Feature Importance Analysis

(A) XGBoost: Global SHAP beeswarm plot show-

ing the top 15 features ranked by mean SHAP value.

(B) LightGBM: Global SHAP beeswarm plot show-

ing the top 15 features ranked by mean SHAP value.

Figure 3: Global SHAP feature importance visualizations for (A) XGBoost and (B) LightGBM models

trained on 6-hour summary features. Higher absolute SHAP values indicate greater contribution to the

model’s predictions.

Global SHAP beeswarm plots (Figure 3A-B) show that baseline HR, respiratory rate, FiO2, and tem-

perature consistently ranked among the most influential predictors across both XGBoost and LightGBM

models. Predicted sepsis risk increased with higher baseline HR, respiratory rate, FiO2, and temperature.

Notably, patients for whom FiO2 was never recorded in the first six hours were less likely to be septic.
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5 Discussion/Conclusion

5.1 Major Findings and Interpretation

This study systematically benchmarked seven machine learning models and four feature-engineering strate-

gies for early sepsis prediction using ICU electronic medical record data. Gradient boosting models (XG-

Boost and LightGBM) consistently outperformed all other classifiers across most meaningful metrics, par-

ticularly when trained with 24-hour summary features. These models effectively captured complex non-

linear relationships and leveraged informative missingness patterns, achieving AUPRC values two to four

times higher than the baseline prevalence.

SVM (radial kernel) and logistic regression were occasionally competitive when summary features were

included, performing comparably to tree-based models in AUROC and F1-score for certain datasets (e.g.,

24-hour summary with median imputation; Table 7). This demonstrates that simpler models can perform

reasonably well when provided with richer feature engineering.

Missing data handling emerged as a critical driver of performance. On baseline data, listwise deletion

yielded stronger AUPRC, precision, and F1 score than median imputation, although this is likely due to

the significant differences in class distribution. Median imputation improved AUROC, sensitivity, and

specificity for most models. For tree-based models, retaining missing values natively was often far superior

to median imputation, confirming that missingness patterns themselves can encode clinically relevant

information.

Feature engineering choices also strongly influenced model performance. Incorporating summary statis-

tics over the first 24 hours (counts, deltas, and ranges) substantially improved discriminative ability com-

pared to single baseline measurements. These findings are consistent with previous PhysioNet Challenge

results, where top teams similarly emphasized temporal features. Models using only six-hour data per-

formed worse than those using 24-hour data, illustrating the trade-off between earlier predictions and

predictive power.

The SHAP analysis provided additional interpretability, highlighting which features most influenced the

models’ predictions. For the 24-hour datasets, FiO2, lactate, and creatinine consistently had the largest

impact, whereas in the 6-hour summary, HR, Resp, and FiO2 were most influential. Count features were

more influential in the 24-hour window, likely due to their encoding of clinical concern. For each strategy,

LightGBM and XGBoost consistently agreed on the most influential feature, although subsequent feature

rankings varied between the two.

Overall, the consistent superiority of gradient boosting models with summary statistics suggests these

approaches should be prioritized for early sepsis prediction. Allowing these models to natively handle

missingness without imputation is critical. Furthermore, SHAP-based interpretability can help support

clinical adoption, improving model transparency.

5.2 Limitations and Future Research

This study relied on a single dataset (PhysioNet 2019), which may not fully generalize to all ICU populations

or hospital systems without external validation. Predictions were based on static early-window features

and thus cannot provide precise onset timing. The use of median imputation, while effective, is a relatively

simple approach; more sophisticated methods such as MICE or deep-learning-based imputation could yield

further improvements. Similarly, undersampling addressed class imbalance but discards the majority-class

information. Future work should evaluate alternative techniques such as oversampling or synthetic data

generation (e.g., SMOTE) to preserve signal from the full dataset.
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Despite these limitations, this controlled setting was valuable for systematically comparing model classes

and evaluating the strength of early feature signals. Building on these insights, future work should focus

on rolling, real-time prediction frameworks that continuously update risk scores and estimate the timing

of sepsis onset. Incorporating richer temporal features (e.g., trends, rates of change) and survival anal-

ysis techniques could improve performance, as well as exploring deep learning architectures specifically

designed for time-series data. Validating these models on diverse, multi-center datasets will help assess

generalizability and potential for clinical deployment.

Supplemental Materials

The complete dataset and all Python code used in this study are available in the GitHub repository at

https://github.com/ab2028/early-sepsis-pred. Readers are encouraged to access the repository to review

and reproduce the analyses.
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Appendix. Variable Definitions and Distributions

Table 11 lists all variables and their definitions. Figures 4, 5, and 6 show the variable distributions.
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Table 11: List of Variables Used in the Study

Category Variable (Description)

Vitals HR – Heart rate (beats/min)

O2Sat – Oxygen saturation (%)

Temp – Body temperature (°C)
SBP – Systolic blood pressure (mmHg)

MAP – Mean arterial pressure (mmHg)

DBP – Diastolic blood pressure (mmHg)

Resp – Respiratory rate (breaths/min)

Labs FiO2 – Fraction of inspired oxygen (%)

Platelets – Platelet count (×109/L)

Hgb – Hemoglobin (g/dL)

WBC – White blood cell count (×109/L)

Lactate – Serum lactate (mmol/L)

Creatinine – Serum creatinine (mg/dL)

BUN – Blood urea nitrogen (mg/dL)

Glucose – Blood glucose (mg/dL)

pH – Arterial blood pH

PaCO2 – Partial pressure of CO2 (mmHg)

HCO3 – Bicarbonate (mmol/L)

Demographics Age - Age in years (capped at 100 for those 90+)

Gender - Female (0) or Male (1)

Unit - Administrative identifier for ICU unit (0=Missing, 1=MICU, 2=SICU)
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Figure 4: Histograms of vital sign variables used in the study.
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