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Abstract

This study evaluates the use of logistic regression and supervised machine learning

models to predict diabetes diagnosis based on demographic factors, medical history,

and blood culture results. Logistic regression is employed for feature selection,

helping to identify key risk indicators. The performance of several machine learning

binary classification algorithms is compared using multiple goodness-of-fit metrics.

Results highlight the added value of laboratory data and ensemble methods in

improving diagnostic performance.
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1 Introduction

1.1 Diabetes Mellitus: Mechanisms, Types, and Risk Factors

Diabetes mellitus is a chronic metabolic disorder characterized by elevated levels of blood

glucose (hyperglycemia), which result from defects in insulin production, insulin action, or

both. Glucose, the body’s primary energy source, comes from the food we eat and is absorbed

into the bloodstream during digestion. Under normal physiological conditions, insulin, a

hormone secreted by the beta cells of the pancreas, facilitates the uptake of glucose into

muscle, fat, and liver cells for energy or storage. In people with diabetes, this process is

impaired, causing glucose to accumulate in the blood rather than being properly utilized by

the body’s cells (American Diabetes Association, 2014; National Institute of Diabetes and

Digestive and Kidney Diseases, 2022).

1



There are several types of diabetes, but the two most common forms are type 1 diabetes

and type 2 diabetes. Type 1 diabetes is an autoimmune condition in which the immune

system mistakenly destroys the insulin-producing beta cells in the pancreas. As a result, the

body produces little or no insulin. This form of diabetes is usually diagnosed in children,

adolescents, or young adults and requires lifelong insulin therapy for survival (Atkinson et

al., 2014). Patients with type 1 diabetes must monitor their blood glucose regularly and

administer insulin either via injection or an insulin pump to maintain glycemic control.

Type 2 diabetes, on the other hand, is characterized by insulin resistance, a condition

in which the body’s cells do not respond properly to insulin. Over time, the pancreas may

also produce less insulin, exacerbating the problem. Unlike type 1 diabetes, type 2 diabetes

is more prevalent in adults, though it is increasingly being diagnosed in children due to

rising rates of obesity and sedentary lifestyles. Risk factors for type 2 diabetes include

obesity, physical inactivity, poor diet, family history of diabetes, and advancing age. This

form of diabetes can often be managed with lifestyle modifications (diet and exercise), oral

medications, and sometimes insulin (DeFronzo et al., 2015).

If left untreated or poorly managed, both types of diabetes can lead to serious complica-

tions such as cardiovascular disease, nerve damage (neuropathy), kidney failure (nephropa-

thy), vision problems (retinopathy), and lower-limb amputations. Therefore, early diagnosis

and ongoing management are crucial for preventing complications and maintaining quality

of life.

1.2 A Brief History of Diabetes: From Ancient Despair to Scien-

tific Breakthroughs

Diabetes has been a persistent and often deadly disease for centuries. The earliest known

description of a diabetes-like condition dates back to ancient Egypt around 1500 BCE, where

documents such as the Ebers Papyrus mentioned excessive urination and weight loss—classic

symptoms of the disease. In antiquity, diabetes was considered a fatal condition. Without

an understanding of its physiological causes, treatments were largely ineffective. One com-

mon approach in the 19th century involved placing patients on strict starvation diets to

reduce sugar intake and extend life slightly. Unfortunately, this often resulted in death from

malnutrition or starvation rather than diabetes itself (Bliss, 1982).

A major turning point in understanding the disease came in 1889, when German physi-

cians Joseph von Mering and Oskar Minkowski surgically removed the pancreas from a dog.

The animal subsequently developed symptoms now known to be indicative of diabetes mel-

litus, including polyuria and glycosuria, and ultimately died. This experiment provided the

first strong evidence that the pancreas played a critical role in blood sugar regulation (von
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Mering and Minkowski, 1890).

Building on this foundation, Canadian surgeon Frederick Banting and medical student

Charles Best conducted groundbreaking research in 1921 at the University of Toronto. They

replicated Mering and Minkowski’s procedure and went further, isolating a pancreatic extract

that could lower blood sugar levels in diabetic dogs. Working alongside James Collip and

John Macleod, they successfully purified insulin from the pancreas of a cow, which they used

in 1922 to treat a 14-year-old patient, Leonard Thompson—the first human to receive insulin

therapy. The results were dramatic and lifesaving. This discovery marked the beginning

of effective treatment for diabetes, transforming it from a fatal disease into a manageable

chronic condition (Bliss, 1993).

Further advancements in diabetes research continued into the 20th century. In 1936,

British physician Sir Harold Percival (Harry) Himsworth published a seminal paper dis-

tinguishing between two types of diabetes based on insulin sensitivity. He classified type

1 diabetes as insulin-sensitive (insulin-deficient) and type 2 diabetes as insulin-insensitive

(insulin-resistant), laying the foundation for our modern classification system (Himsworth,

1936).

In recent decades, technological innovations have dramatically improved the quality of

life for people living with diabetes. Continuous Glucose Monitors (CGMs) allow real-time

tracking of glucose levels, reducing the need for finger-prick tests and enabling more precise

glucose control. When paired with insulin pumps, which deliver insulin automatically in re-

sponse to glucose levels, these tools form an integrated system that mimics some functions of

a healthy pancreas. This closed-loop system—often referred to as an ”artificial pancreas”—is

particularly transformative for individuals with type 1 diabetes, who now commonly live well

into their 70s and beyond with proper care and management (Heinemann et al., 2018).

Looking forward, artificial intelligence (AI) is poised to further revolutionize diabetes

care. AI algorithms are being developed to predict blood glucose trends, optimize insulin

dosing, and personalize dietary and activity recommendations. These tools promise to en-

hance both self-management and clinical decision-making, making life with diabetes more

manageable and sustainable than ever before (Contreras and Vehi, 2018).

1.3 Literature Review: Machine Learning for Binary Prediction

of Diabetes

The application of machine learning (ML) in binary classification tasks such as diabetes

prediction has gained significant momentum, offering powerful alternatives to traditional

statistical methods. Various supervised ML models—including logistic regression, random

forests, and artificial neural networks (ANNs)—have demonstrated excellent performance on
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clinical and demographic datasets.

Together, these studies suggest that ensemble methods, particularly random forests, con-

sistently outperform other models in binary diabetes prediction tasks. The incorporation of

interpretability tools and clinical relevance further supports the integration of these models

into real-world healthcare decision-making.

Analyzing similar work, a 2022 study employed many different forms of supervised ma-

chine learning, including: logistic regression, KNN, random forest, decision tree, bagging,

AdaBoost, XGBoost, Voting, and SVM. XGBoost and Bagging algorithms performed the

best, with F1 scores of 0.81 and 0.79 respectively, and accuracies of 81% and 79% respec-

tively, confirming that ensemble methods outperform other models (Tasin et al., 2022). In

a similar study, Iparraguirre-Villanueva et al. (2023) evaluated KNN, decision tree, logis-

tic regression, SVM, and BNB, a model not discussed in this study. KNN performed the

best with the highest accuracy of 79.6%, with BNB just under performing at 77.2%. Other

models, however, did not perform as well. Febrian et al. (2022) built on existing work,

specifically comparing KNN and Naive Bayes models. They found that Naive Bayes seemed

to consistently outperform KNN models.

In a more detailed analysis, Kaviyaadharshani et al. (2024) utilized many datasets,

comparing many of the models listed in the previous study. Most of the datasets proved to

be very successful, with accuracies as high as 99.41%.

1.4 Data Description

This dataset, titled Diabetes Prediction Dataset, was obtained from Kaggle. It contains

approximately 100,000 entries, and eight variables: patient’s gender, age, BMI, blood glu-

cose level, presence of hypertension status, presence of heart disease, smoking history, and

lycohemoglobin (HbA1c) level. The outcome variable is a binary diabetes diagnosis (positive

or negative), making this dataset suitable for classification tasks.

Table 2 in the appendix contains the full list of predictor variables along with histograms

or bar graphs illustrating their distributions, separated by diabetes status.

The dataset is highly imbalanced, with only 8.5% of cases being positive. While such

imbalance is common in medical datasets, it did not significantly affect model performance

in this study, as the overall fit remained strong across evaluation metrics.

2 Binary Classifiers: Theoretical Framework

Here, we provide a brief theoretical introduction to the statistical and machine learning

techniques used to model the data.
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2.1 Logistic Regression

Logistic regression extends the linear regression framework by applying the sigmoid (logis-

tic) function, which maps predicted values to the [0,1] interval, allowing interpretation as

probabilities (Korosteleva, 2018). The model is based on the log-odds (logit) transformation:

ln
π

1− π
= β0 + β1 x1 + · · · + βk xk

where π denotes the probability that the response variable is equal to 1. Here x1, . . . , xk is a

set of predictors, β0 is the intercept, and the parameters β0, . . . , βk are the regression slopes.

Once the model is fitted, predicted probabilities are generated and then typically thresh-

olded at 0.5 to classify observations into binary outcomes.

2.2 Probit Regression

Probit regression is conceptually similar to logistic regression but uses the cumulative dis-

tribution function (cdf) of the standard normal distribution instead of the logistic function

(Korosteleva, 2018). The model takes the form:

π = Φ
(
β0 + β1 x1 + · · · + βk xk

)
where Φ(·) denotes the standard normal cdf. Compared to logistic regression, probit regres-

sion is less sensitive to outliers.

2.3 Complementary Log-Log Regression

Complementary log-log (cloglog) regression is another alternative for modeling binary out-

comes, particularly useful when the event of interest has a low probability of occurring

(Korosteleva, 2018). Unlike the symmetric sigmoid curve of logistic regression, the cloglog

link function produces an asymmetric curve, making it more appropriate for skewed outcome

distributions. The model is defined as:

ln(− ln(1− π)) = β0 + β1 x1 + · · · + βk xk.

2.4 Random Forest

The random forest algorithm is an ensemble learning method that builds a large number

of decision trees and combines their predictions to improve accuracy and reduce overfitting

(James et al., 2021). It operates by generating multiple bootstrap samples from the original

dataset, that is, each sample is drawn with replacement, and training a separate decision

tree on each sample.
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For classification tasks, about two-thirds of the data is used in each bootstrap sample to

train a tree, while the remaining one-third (called the out-of-bag sample) can be used for

internal validation. Each tree is constructed by recursively splitting the data, but at each

split, only a random subset of features is considered. This process of combining bagging

(bootstrap aggregation) with feature randomness introduces diversity among the trees, which

strengthens the ensemble.

Once all trees are trained, the final classification prediction is made by majority voting

across the trees.

2.5 Gradient Boosting

Unlike bagging, which builds multiple decision trees in parallel and aggregates their predic-

tions to reduce variance, boosting is a sequential ensemble method that aims to reduce bias

by building models iteratively (Cerulli, 2023). Each new model in the sequence attempts to

correct the errors made by the previous ones.

Boosting begins with a weak initial model—often a constant predictor—and then fits

subsequent models to the residuals (i.e., the difference between the observed and predicted

values). At each step, a new weak learner is trained to approximate these residuals, and the

overall model is updated by adding the new learner’s contribution.

The iterative update rule can be written as:

f̂new(x) = f̂old(x) + λ f̂ b(x)

where f̂ b is the bth weak learner, and λ is the learning rate, a small constant that controls

how much each learner contributes.

After B iterations, the final boosted model is the sum of all weak learners:

f̂(x) =
B∑
b=1

λ f̂ b(x).

This approach allows for building strong predictive models by focusing sequentially on

hard-to-predict examples, leading to higher accuracy and better generalization in many set-

tings.

2.6 Support Vector Machine

Support Vector Machines are supervised learning models used for binary classification tasks.

The main idea behind SVM is to find the optimal hyperplane that best separates data points

from two different classes (James et al., 2021). This hyperplane is chosen to maximize the

margin, which is the distance between the hyperplane and the nearest data points from each
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class. These nearest points are called support vectors, and they are the only points that

directly influence the position and orientation of the hyperplane.

In the case of linearly separable data, the optimization problem is:

Find w, b such that:

min
w,b

1

2
∥w∥2

subject to: yi(w
⊤xi + b) ≥ 1 for all i

where w is the weight vector perpendicular to the hyperplane, b is the bias term, xi are the

input vectors, and yi ∈ {−1, 1} are the class labels.

The decision function is:

f(x) = sign(w⊤x+ b).

However, many real-world datasets are not linearly separable. To handle this, SVMs can

use the kernel trick, which maps the original input features into a higher-dimensional space

where a linear separator may exist. Common kernels include:

• Polynomial kernel:

K(x,x′) = (x⊤x′ + c)d

where c is a constant and d is the degree of the polynomial.

• Radial basis function (RBF) kernel / Gaussian kernel:

K(x,x′) = exp
(
−γ∥x− x′∥2

)
where γ controls the width of the Gaussian.

• Sigmoid kernel (related to neural networks):

K(x,x′) = tanh(αx⊤x′ + c).

By using these kernels, SVMs can create non-linear decision boundaries in the original

feature space, making them highly flexible and effective in many complex classification tasks.

2.7 k-Nearest Neighbor

K-Nearest Neighbors is a simple yet powerful non-parametric classification method. It works

by classifying a new data point based on the majority class of its closest neighbors in the

training set (James et al., 2021). The user specifies a value of k, which determines how many

nearby data points are considered when making a prediction.
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To classify a new point, the algorithm measures the distance between that point and all

others in the training data—most commonly using Euclidean distance—and identifies the k

nearest neighbors. The class that appears most frequently among these neighbors is then

assigned to the new point.

KNN requires no training phase and is intuitive to understand and implement. However,

it can be computationally intensive for large datasets and may perform poorly in high-

dimensional spaces. It’s also sensitive to the choice of k and to the scale of the input

features, making preprocessing like normalization important.

2.8 Naive Bayes

As the name suggests, Naive Bayes classification is based on Bayes’ Theorem, which provides

a way to calculate the probability of a class Y given a set of input features X (Cerulli, 2023).

The general form of Bayes’ Theorem is:

P(Y | X) =
P(X | Y )P(Y )

P(X)
.

The algorithm computes the posterior probability of each class given the observed features

and assigns the label with the highest probability.

The method is considered “naive” because it assumes that all predictors (features) are

conditionally independent given the class label. That is, the presence or value of one feature

does not influence any other, given the class. While this assumption is often violated in

practice, the model still performs surprisingly well in many applications.

2.9 Artificial Neural Network

Artificial Neural Networks (ANNs) are among the most important and widely used machine

learning methods powering today’s advances in artificial intelligence. Inspired by the struc-

ture of the human brain, ANNs consist of interconnected layers of nodes, called neurons,

which transform input data into meaningful outputs.

An ANN typically takes raw input features and passes them through one or more hid-

den layers, each containing multiple neurons (Cerulli, 2023). These hidden layers perform

complex transformations, extracting hierarchical features and patterns from the data. The

structure and number of hidden layers and nodes are usually determined through experi-

mentation and model tuning, as they are not directly interpretable.

The final layer, called the output layer, produces the prediction or classification result

based on the processed information. Through a process called training, the ANN adjusts the

weights of connections between neurons to minimize prediction error, often using algorithms

like backpropagation and gradient descent.
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This ability to learn complex, non-linear relationships makes ANNs a highly effective

classification tool.

2.10 Performance Measures

To evaluate the effectiveness of classification models, several performance measures are com-

monly used. Below are brief definitions of key metrics:

• Accuracy: The proportion of all correct predictions (both true positives and true

negatives) among the total number of cases.

• Sensitivity (Recall): The ability of the model to correctly identify positive cases

(true positives) out of all actual positives.

• Specificity: The ability of the model to correctly identify negative cases (true nega-

tives) out of all actual negatives.

• Precision: The proportion of true positive predictions out of all positive predictions

made by the model.

• F1-Score: The harmonic mean of precision and sensitivity, providing a balance be-

tween the two metrics.

• ROC Curve (Receiver Operating Characteristic Curve): A graphical plot il-

lustrating the trade-off between sensitivity (true positive rate) and 1-specificity (false

positive rate) across different classification thresholds.

• AUC (Area Under the ROC Curve): A scalar summary of the ROC curve repre-

senting the model’s ability to discriminate between classes across all thresholds; values

closer to 1 indicate better performance.

3 Applications and Results

3.1 Determining Feature Importance

Random Forest and Gradient Boosting are machine learning algorithms that have built-in

methods for calculating feature importance, which help identify the most influential predic-

tors in the model. In addition to these tree-based models, supplementary regression analyses

were also conducted to further evaluate the primary contributing factors to diabetes diag-

nosis.
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Figures 1 and 2 in the appendix display the feature importance scores generated by

the models. These scores indicate the relative impact each variable has on the prediction

outcome, allowing us to better understand which factors play the most significant role in

classifying diabetes status.

Across all figures, HbA1c level consistently emerges as the most significant predictor for

diabetes diagnosis. HbA1c, or glycated hemoglobin, reflects the average blood glucose level

over the past few months, making it a direct and reliable indicator of long-term glucose

regulation. As expected, blood glucose level itself also shows strong predictive value.

Body Mass Index (BMI) and age are two additional features that demonstrate moderate

yet consistent importance across different algorithms. Given that BMI is a measure of body

fat—a known risk factor for metabolic disorders—its relevance in predicting diabetes is well

supported. Similarly, the increased susceptibility of older individuals to type 2 diabetes is

well documented, and the models reflect this trend.

In contrast, some other health-related features, such as smoking history and heart disease,

surprisingly show relatively low importance in this dataset. These results suggest that while

such factors may contribute to overall health, their direct impact on diabetes prediction in

this population may be limited.

3.2 Comparing Performance Measures

The results of eleven machine learning algorithms designed to predict diabetes diagnosis

based on selected predictors are presented below in tabular form (see Table 1).

Table 1. Performance Measures Across Eleven Machine Learning Models.

Algorithm Accuracy Sensitivity Specificity Precision F1-score AUC

Random Forest 0.9703 0.6729 1 1 0.8045 0.8643

Gradient Boost 0.9681 0.6799 0.9945 0.9188 0.7815 0.9638

SVM (linear) 0.9609 0.5883 0.9953 0.9209 0.7179 0.9561

SVM (polynomial) 0.9638 0.5825 0.9991 0.9833 0.7316 0.9439

SVM (radial) 0.9632 0.5796 0.9987 0.9765 0.7274 0.9251

SVM (sigmoid) 0.9143 0.4866 0.9538 0.4932 0.4899 0.8497

KNN 0.9558 0.5165 0.9966 0.9340 0.6652 0.9153

Naive Bayes 0.9066 0.6386 0.9312 0.4601 0.5349 0.8984

ANN (1,3) 0.9212 0.7134 0.9746 0.8773 0.7806 0.9279

ANN (2,3) 0.9209 0.6978 0.9781 0.8941 0.7827 0.9559

ANN (tanh) 0.6933 0.2370 0.8102 0.2425 0.2397 0.8363
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Analyzing the results, it is unsurprising that the Random Forest algorithm performs the

best. This aligns with the findings of the Khan et al. (2024) study, which suggests that the

algorithms are functioning properly. In fact, the Random Forest algorithm achieved a slightly

higher accuracy than reported in that study. With an accuracy of 0.9703, it outperformed

all other algorithms in accuracy, specificity, false positive rate (FPR), precision, and F1

score. Its sensitivity is second only to the Gradient Boost algorithm, with only a minimal

difference. However, Gradient Boosting exhibits a much higher area under the ROC curve

(AUC), demonstrating its strong predictive capability as well.

All other algorithms achieved accuracy rates above 90%, except for the ANN with the

tanh activation function. These findings are supported by both the confusion matrix and

ROC curve analyses. Overall, the results indicate that the developed algorithms are effective

for diabetes diagnosis.

4 Conclusion

4.1 Summary of Work Completed

This study applied a variety of machine learning algorithms to predict diabetes diagnosis,

with Random Forest and Gradient Boosting emerging as the top performers. These findings

are consistent with numerous existing studies that highlight the strength of ensemble methods

in classification tasks. Notably, nearly all algorithms achieved an accuracy exceeding 90%,

demonstrating the robustness and reliability of the models developed.

4.2 Proposed Future Directions

Given the promising potential of machine learning to revolutionize disease diagnosis, as evi-

denced by this study and the broader literature, there are countless opportunities to enhance

diabetes healthcare through advanced analytics. Future work might focus on applying simi-

lar machine learning approaches to predict the length of hospital stay for diabetic patients,

incorporating relevant clinical and demographic predictors. Additionally, a more detailed

classification of diabetes types and severity levels could be undertaken to better understand

their impact on patient outcomes and tailor predictive models accordingly.

Supplemental Materials

The dataset, R code, and all relevant outputs (including the ROC curves) are available in the

project’s GitHub repository (https://github.com/sathvik-kommireddy/Diabetes-Machine-Learning.git)

for reproducibility and further exploration.
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Appendix

Table 2. Comparison of Patient Characteristics by Diabetes Status.

Variable

Name

Plot for

Diabetic Patients

Plot for

Non-diabetic Patients

Gender

Age

Blood glucose

level

14



Variable

Name

Plot for

Diabetic Patients

Plot for

Non-diabetic Patients

Hypertension

Heart disease

Smoking his-

tory

BMI

HbA1c level
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(a) Random Forest

(b) Gradient Boosting

Figure 1. Feature Importance Graphs for Random Forest and Gradient Boosting.
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(a) Logistic Regression

(b) Probit Regression

(c) Cloglog Regression

Figure 2. Feature Importance Graphs for Binary Regressions.
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