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Abstract

Ornamental patterns have decorated art and architecture across cultures for

millennia, long before their mathematical properties were formally understood.

This paper explores the symmetry groups underlying ornamental and frieze pat-

terns. We first examine one-dimensional ornamental patterns, governed by trans-

lations and reflections, and show that only two distinct symmetry groups are

possible. Extending to two dimensions, we classify frieze patterns – infinitely

repeating designs in one direction – into seven distinct groups based on combina-

tions of translations, reflections, rotations, and glide reflections.

Keywords: ornamental pattern, frieze pattern, group, symmetry, transformation,

translation, reflection, rotation, glide reflection

1 Introduction

Ornamental patterns have been a prominent feature in art, architecture, textiles, and

everyday objects across nearly every culture and most of history. Ancient civilizations

such as the Egyptians, Greeks, Romans, and Mesopotamians used linear decorative

motifs to adorn pottery, clothing, and even temples. These early ornamental patterns

often exhibited simple forms of repetition and symmetry, long before their mathemat-

ical properties were formally studied. In Islamic art (Figure 1), particularly from the

8th century onward, artisans developed repeating patterns, including friezes to adorn

mosques and other religious buildings [1].
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Figure 1: Fragment from a frieze with a meandering pattern and diamond-shaped

rosettes, 6th century Islamic art, Egypt. Metropolitan Museum of Art, Accession Num-

ber 09.217.1a, b.

Figure 2: Example of a frieze pattern based on a fleur-de-lis image generated using the

Python code developed in this paper (Supplementary Information).

Frieze patterns (Figure 2), as a formal mathematical concept, emerged much later

through the study of symmetry in the 19th and 20th centuries. Mathematicians began

to classify all possible one-dimensional repeating patterns based on their symmetries,

eventually identifying exactly seven distinct frieze groups. However, this work was

rarely focused exclusively on frieze or ornamental patterns. Instead, writing by authors

such as Fedorov in 1891 [2] and Polya in 1924 [3] focused on wallpaper patterns (pat-

terns that exist in two dimensions and have infinite rapport in both directions — both

Polya and Fedorov proved that there are only 17 groups that include all wallpaper pat-

terns independently from each other) or on similar patterns in three dimensions. These

more formal classifications of wallpaper patterns made it easier for artists such as M.

C. Escher to design works of art centering on the symmetries of wallpaper patterns [4].

This expository essay explores the mathematical classification of frieze patterns and or-

namental patterns. We can understand frieze patterns better by first studying a simpler

version, the line or ornamental pattern, a pattern that exists in only one dimension

and can be more easily imagined as a colored string. For illustrative purposes, different
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Figure 3: Three objects (pentagram, pentagon, and Celtic knot) each with fivefold

reflective and rotational symmetry. The lines of reflection are marked with red lines.

colors on a string can be better represented by beads of different sizes, allowing us

to make use of size to distinguish between different parts of the pattern. Ornamental

patterns only consist of translation and reflection symmetries. As mentioned above,

rotation in one dimension is impossible. Glide reflection is also impossible in one di-

mension, as it would involve reflection over the line of translation, which is impossible

in one dimension.

1.1 Key Concepts

A pattern is a geometric design that exists in one or more dimensions and repeats in

one or more directions, creating a sense of visual consistency and structure. Frieze

patterns are endlessly repeating designs (known as patterns of Infinite Rapport)

that exist in the two-dimensional plane. They can be imagined as a strip that stretches

infinitely but has a finite width. Translation is a transformation that moves every

point of a shape the same distance in the same direction, without rotating or flipping

it. The space remains congruent and oriented the same way. Reflection is a transfor-

mation that flips a shape over a specific line, called the line of reflection, producing a

mirror image of the original shape. Rotation is a transformation that turns a shape

around a fixed point, known as the center of rotation, by a certain angle and in a

specified direction (clockwise or counterclockwise). Notably, it is only possible in a

space of two or more dimensions, since in one-dimensional space, only rotation by 180

degrees is possible, with the result being the same as reflection. Glide reflection is

a combination of a translation and a reflection. First, the shape being transformed is
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translated along a line and then reflected over that same line or a line parallel to it [5].

These transformations are all types of isometries, meaning they preserve distances and

angles, keeping the shape congruent to its original form. In fact, these transformations

form a symmetry group which we define rigorously below.

A transformation is a mapping of space that associates with every point p in the

space a point p′. Transformations are written as capital letters, such as transformation

S, transformation T−1 and so on [6].

A special transformation carries a point p on itself (the points p and p′ occupy the same

coordinates). This transformation is known as the identity of the space and is marked

with the letter I. The identity, it should be noted, is its own inverse, so that I = I−1 [6].

We can also compose mappings, so that if a transformation S carries a point p to p′

and a transformation T carries a point p′ to point p′′, so that the mapping ST carries

a point p to point p′′. It should be noted that the composition of the mappings is

generally not commutative, so the mappings ST and TS will not always produce the

same result, depending on what types of transformations T and S are [6].

We can also compose mappings with their inverses (the inverses are usually written such

that the inverse of transformation S will be transformation S−1, as we have written

above). When we compose a mapping with its inverse (which is also a transformation),

the result is the identity, so that SS−1 = I. The composition of a mapping with its

inverse is usually commutative, so that SS−1 = S−1S = I. As noted above, the identity

is its own inverse; the transformation of reflection over a line is also its own inverse,

since the double iteration of reflection SS will return the point p to itself, and so SS = I

[6].

A symmetry (also called an automorphism or similarity) is defined by Weyl [6] as ”those

transformations that leave the structure of space unchanged”. Weyl [6] goes on to state

that, ”Given a spatial configuration F, those automorphisms of space which leave F

unchanged form a group Γ and this group exactly describes the symmetry possessed by

F”. This means that, given a ”spatial configuration”, or in more common terms a shape
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(represented as F), the group of F are those automorphisms which leave the shape un-

changed, that is, ”appearing the same”. Since the group includes all transformations

which leave the shape ”appearing the same”, the identity I would also belong to this

group, since it maps every point onto itself.

The example that Weyl [6] gives is that of a pentagram (Figure 3) where he notes that

the pentagram possesses 5 distinct lines of reflection, and possesses 5-fold rotational

symmetry. These symmetries form the group to which the pattern belongs. However,

other patterns can also belong to this symmetry group, such as a pentagon or other

shapes possessing the same symmetries. This shows that different patterns, even those

that appear quite different, can belong to the same group. From this, we can begin

theorizing about the number of groups needed to classify all ”configurations of space”

within certain constraints (the number of dimensions, for example).

We then consider the case of frieze patterns, which we have defined as repeating patterns

that exist in the two-dimensional plane, but repeat infinitely in only one dimension.

Within these constraints, experimentation can reveal that all frieze patterns belong

to one of seven groups, characterized by translations, reflections, rotations, and glide

reflections. We will eventually prove why this is the case, but we must first examine the

case of ornamental patterns, which we have defined as one-dimensional patterns that

repeat in only one direction; we theorize that there are only two of these.

2 Mathematical Perspective

2.1 Symmetry Groups of Ornamental Patterns

We begin with five examples of ornamental patterns, which we model as strings of beads

(see Figure 4 below). Infinitely many such patterns can be constructed by introducing

beads of varying sizes along the string.

As the simplest example, consider a pattern composed of beads all of the same size.

This can be interpreted as a single bead repeated infinitely through translation, forming

a necklace. Such a pattern exhibits translational symmetry. In addition, it possesses

two instances of reflection symmetry: one at the center of each bead and another mid-
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way between any two consecutive beads.

In the second example, the pattern consists of a repeating unit made up of one small

bead followed by one large bead. This unit is repeated infinitely in both directions to

form a necklace. Like the previous example, this pattern has translational symmetry.

Also like the previous example, it has two distinct sets of reflection points: one at the

center of each small bead and another at the center of each large bead.

The third example that we consider is a necklace made of repetitions of a small bead,

a medium bead, and a large bead. This necklace has a translational symmetry but no

lines of reflection.

The fourth example we examine is that of a large bead followed by a medium and small

one. It is similar to the third example in that it lacks reflective symmetry.

We can also extend the units that are repeated much further, as in example five, where

we examine the patterns of beads on a Catholic rosary, where the repeating unit is

a ”decade” of beads, consisting of 10 small beads followed by one large bead. This

pattern, too, includes two distinct instances of reflectional symmetry in the center of

each large bead and in between the 5th and 6th small beads.

Patterns 1, 2, and 5 each have the same symmetries — they all consist of translation

with two distinct instances of reflection.

By examining these and similar patterns, we can propose a classification of all orna-

mental patterns into a finite number of distinct ornamental groups. We formulate the

statement in the form of a proposition.

Proposition 1 There exist two distinct ornamental groups, one consisting of trans-

lation, and the other consisting of both translation and reflection.

Proof: There are only two transformations that are possible in strictly one dimension:

translation and reflection. All ornamental groups must therefore consist of some com-

bination of these transformations.
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Figure 4: Some examples of ornamental patterns with identified units and symmetries.
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Figure 5: Illustration of all distinct frieze patterns.

Now, we analyze the possible groups that can be formed using these symmetries: (i) a

group with only translation is valid and represents one type of ornamental group; (ii)

a group with translation and reflection is another valid combination, and it forms a

different type of ornamental group.

However, a group with only reflection is not valid for ornamental patterns, because a

reflection alone does not generate a repeating pattern. Any ornamental pattern must

involve translation, since repetition is inherent to ornamentation. □

2.2 Symmetry Groups of Frieze Patterns

There are seven types of frieze patterns, as illustrated in Figure 5. Before proceeding

to state the theorem and provide its proof, we describe each pattern. Pattern p1

involves translation only and is also considered an ornamental pattern. Pattern p2

features two distinct points of two-fold (or 180◦) rotational symmetry. Pattern p11g

includes a longitudinal line of glide reflections. Pattern p1m1, like p1, is based on

translation but also includes two distinct vertical lines of reflection, making it another
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ornamental pattern. Pattern p11m includes reflection across a longitudinal (horizon-

tal) line. Pattern p2mg combines longitudinal glide reflection with two vertical lines

of reflection, resulting in distinct points of rotation as well. Pattern p2mm is similar

to p2mg, but instead of a glide reflection, it has a longitudinal line of ordinary reflection.

According to Schattschneider [7], the names of the frieze patterns are read from left

to right and follow a convention established by the International Union of Crystallog-

raphy. The initial letter “p” stands for a primitive cell, which refers to the smallest

unit that repeats throughout the pattern. Following the “p”, a number indicates the

highest order of rotational symmetry present. Four of the seven frieze patterns lack ro-

tational symmetry and are therefore labeled with a “1”. The remaining three patterns

do exhibit rotational symmetry and are labeled with a “2”, indicating second-order ro-

tational symmetry—that is, a 180◦ rotation. The third character signifies the presence

or absence of vertical reflection axes (i.e., a series of vertical lines of reflection perpen-

dicular to the horizontal axis). An “m” denotes mirror (reflection) symmetry, a “g”

indicates glide reflection symmetry, and a “1” signifies the absence of vertical reflection

symmetry. The fourth symbol, when included, describes the presence of a horizontal

reflection axis, using the same notation (“m” for mirror, “g” for glide, “1” for none).

If a pattern has only three characters, it lacks a horizontal reflection axis.

Further, to prepare for the theorem on the number of frieze patterns, we begin by stat-

ing and proving the following proposition.

Proposition 2 There is always a translational symmetry in a frieze pattern.

Proof: We examine each of the five symmetries in the context of two-dimensional frieze

patterns. Translation clearly involves translational symmetry. Glide reflection also in-

cludes translation, as it consists of a reflection followed by a translation of the reflected

unit. Reflection over vertical lines implies translation as well, since each reflection is

undone by the next, effectively shifting the pattern; thus, the reflected unit is half the

length of the translated unit. The same logic applies to rotational symmetry—a rota-

tion followed by another results in a translation.
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This leaves reflection over a horizontal line as the final transformation to consider. A

pattern whose only symmetry is reflection over a horizontal line cannot be classified as

a frieze pattern, because it lacks the defining feature of infinite translational repetition.

To possess this property, such a pattern would need to include at least one of the other

four symmetries, each of which inherently involves translation. □

Now we are ready to prove the theorem.

Theorem. There exist a total of seven frieze groups.

We take the proof from the paper of Belcastro and Hull [8].

Proof: Having established that every frieze pattern possesses translational symmetry,

we now consider the remaining four transformations that can contribute to additional

symmetries. These are: rotation by 180 degrees, horizontal reflection (across the lon-

gitudinal axis), vertical reflection, and glide reflection. From these four, we can select

any subset—including none—to combine with translation, yielding:(
4
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(
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)
= 1 + 4 + 6 + 4 + 1 = 16

possible combinations of symmetries [8]. These include the groups: t, r, h, v, g, hv, hr,

hg, vr, vg, rg, hvr, hvg, hrg, vrg and hvrg, where t denotes translation, r denotes 180°
rotation, h denotes horizontal reflection, v denotes vertical reflection, and g denotes

glide reflection. The t for translation is omitted in all groups but the first one because

we have already proven that translation is in every frieze group. The exception is for

the first group, because translation is the only symmetry of that group.

However, many of these combinations are not distinct frieze groups because certain

combinations imply the presence of others. For example, if a pattern has both horizon-

tal and vertical reflectional symmetry, it necessarily also has 180° rotational symmetry,

and vice versa. Therefore, the group with both horizontal and vertical reflections is

equivalent to the group that includes all three symmetries: hvr.

Another example is the combination of translation and horizontal reflection. Such a
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pattern must also exhibit glide reflection, since applying a horizontal reflection followed

by a translation parallel to the reflection line defines a glide reflection. Thus, this com-

bination corresponds to the group hg.

We can continue this process of identifying equivalent sets of transformations and group-

ing them accordingly, thereby reducing the original sixteen combinations to just seven

distinct frieze groups. A detailed explanation of this classification can be found in the

article ”Classifying Frieze Patterns Without Using Groups” by Belcastro and Hull [8],

from which this proof is adapted.

Table 1 listing all sixteen symmetry combinations, along with explanations for why

certain combinations are not counted as distinct, is reproduced from their paper below.

Table 1: List of All Possible Frieze Groups.

t hr, hvr, hrg must also have v

h must also have g vr must also have g

v vg must also have r

r rg must also have v

g vrg

hv, hvg must also have r hvrg

hg

□

3 Directions for Future Research

Further research in the area of symmetry groups can be done in two directions: div-

ing deeper into understanding frieze patterns, and progressing to understanding more

complicated symmetry patterns in higher dimensions. Both of these paths are made

easier by an understanding of group theory, especially as it relates to symmetry groups.

Group theory allows the creation of more rigorous proofs of the number of possible

symmetry groups for a given space.
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4 Supplemental Materials

The Python code used to generate the frieze pattern illustrations in this paper is avail-

able on GitHub at (https://github.com/Basileus1444/frieze-patterns). The author of

the text fully encourages users to adapt the program for their own use.
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