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Abstract

Disproportionate exposure to air pollution in low-income and minority com-
munities remains a central concern in environmental justice and public health.
This study applies Geographically and Temporally Weighted Regression and krig-
ing interpolation to 2024 EPA Air Quality System data, examining four pollutants
(PM2.5, NO2, O3, CO) from 27 monitoring stations across California with a focus
on the influence of proximity to major ports. Results reveal pronounced spatial dis-
parities: in EJ-designated tracts of Los Angeles, San Bernardino, and San Joaquin
counties, PM2.5 levels were 77.1% higher than in non-EJ areas, accompanied by
nearly double the strength of negative correlation with port distance. Distinct
spatial patterns for ozone and carbon monoxide were also observed. Overall, the
findings underscore the importance of localized spatiotemporal modeling and ac-
counting for multiple pollution sources in advancing environmental justice research.

Keywords: Air quality, environmental justice, pollutants, kriging, geographically and
temporally weighted regression

1 Introduction

1.1 Background

Environmental justice refers to the equitable treatment and meaningful involvement
of all people—regardless of race, ethnicity, national origin, or income—in the develop-
ment and enforcement of environmental policies, laws, and regulations [1]. The movement
emerged from grassroots activism in the 1980s and highlighted how communities of color
and economically disadvantaged populations disproportionately bear the burden of pol-
lution and environmental degradation [2].

Air pollution is among the most well-documented environmental justice concerns. Nu-
merous studies show that minority and low-income communities are consistently exposed
to higher levels of harmful pollutants [3, 4]. These disparities stem from multiple over-
lapping causes: proximity to industrial zones, historical segregation and discriminatory
land-use practices, limited political representation, and economic barriers to relocation
[5].
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The health impacts of pollutants such as PM2.5, NO2, O3, and CO are profound. They
include increased risks of respiratory and cardiovascular disease, premature mortality, and
adverse developmental effects in children [6, 7]. Environmental justice communities are
further burdened by limited access to healthcare and overlapping exposure to multiple
pollutants [8].

Throughout this study, we define environmental justice communities as geographic
areas that experience both elevated pollution burdens and socioeconomic vulnerability,
often indicated by low household income or a high percentage of minority residents.

Transportation infrastructure, particularly ports, highways, and freight corridors, is
a critical contributor to environmental health disparities. Port operations produce sub-
stantial emissions from ships, trucks, trains, and support industries [9]. Communities
situated near ports often experience elevated exposure to diesel particulates, nitrogen
oxides, and sulfur compounds [10].

California is a compelling setting for environmental justice studies. It has one of the
most demographically diverse populations in the U.S., a complex geography, and several
of the nation’s largest port complexes—including Los Angeles, Long Beach, Oakland, and
San Diego—each generating distinct emissions patterns [11]. These conditions, combined
with the state’s Mediterranean climate and topography, create localized pollution issues
that demand nuanced analysis.

Policy attention has grown in recent years. California Assembly Bill 617 (2017) man-
dates localized air monitoring and emissions reductions in overburdened communities [12].
The CalEnviroScreen tool classifies vulnerable communities based on pollution burden
and demographic characteristics, helping guide resource allocation [13].

Yet many studies still rely on global models that assume spatial uniformity. These
models may mask local variations in pollution exposure and demographic vulnerability
[14], undermining both scientific insight and policy effectiveness.

1.2 Literature Review

Environmental justice research has evolved from early descriptive analyses to sophis-
ticated modeling of environmental disparities. Initial studies relied on coarse-scale data
and global regressions to assess the relationship between demographics and pollution
[15, 16].

Seminal reports by the United Church of Christ [17] and Bullard [1] documented
how communities of color were disproportionately burdened by toxic facilities. However,
methodological limitations in early work—such as poor spatial resolution and weak con-
trols for confounding variables—led to debate over whether race or class was the primary
driver of these disparities [18].

By the 2000s, improvements in geographic information systems (GIS), pollution mon-
itoring, and statistical methods allowed researchers to examine pollution-demographic
relationships at finer scales [19]. Jerrett et al. [20] emphasized the need for spatially-
sensitive methods, such as Geographically Weighted Regression (GWR), to capture local
variation.

GWR and related spatial models allowed researchers to identify significant heterogene-
ity in how pollution correlates with demographic characteristics across different regions
[21]. Mennis [22] applied GWR in New Jersey and found substantial spatial differences
that global models failed to detect.

Recent studies have emphasized cumulative exposure to multiple pollutants and the
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need for integrated assessments [23, 24]. Transportation-related air pollution remains a
major focus due to its disproportionate impact on EJ communities. Studies by Houston
et al. [10] and Pastor et al. [25] have shown how ports and freight corridors contribute
to persistent health disparities.

The development of Geographically and Temporally Weighted Regression (GTWR) by
Fotheringham et al. [26] added a temporal dimension to GWR, capturing how pollution
relationships evolve over time—a key advancement for policy-relevant EJ research.

Kriging and other geostatistical methods also gained prominence, allowing for spatial
interpolation of pollution values and associated uncertainty estimation [14, 27]. These
methods support fine-grained exposure mapping essential for environmental health equity.

Despite these advances, most studies still focus on single-source proximity (often just
highways or one port), overlooking the diverse pollution sources that affect California.
Bailey et al. [9] and Boone and Modarres [28] call for more sophisticated proximity
analysis frameworks that include multiple sources.

This study aims to fill that gap by integrating GTWR and kriging with a multi-port
proximity assessment, offering new insights into the spatial dynamics of environmental
justice in California.

2 Geospatial Analysis Data

This study utilized comprehensive air quality monitoring data from the U.S. Environ-
mental Protection Agency’s Air Quality System (AQS), focusing on California monitoring
stations during 2024 [29]. The dataset encompasses four criteria pollutants representing
diverse pollution sources and formation mechanisms: fine particulate matter (PM2.5) from
combustion and secondary formation processes, nitrogen dioxide (NO2) primarily from
vehicle and industrial emissions, ground-level ozone (O3) from photochemical reactions,
and carbon monoxide (CO) from incomplete combustion sources.

2.1 Air Quality Monitoring Data

The EPA AQS database provides quality-assured ambient air monitoring data col-
lected by state, local, and tribal air pollution control agencies using standardized mon-
itoring protocols and quality assurance procedures [30]. For this analysis, we extracted
daily average concentrations for each pollutant from California monitoring stations (State
Code = 6) for the period January 1, 2024, through October 31, 2024. Table 1 presents a
summary of the monitoring data characteristics.

Table 1: Summary of EPA Air Quality Monitoring Data for California (2024)

Pollutant Observations Counties Sites Date Range

PM2.5 37,173 42 64 Jan 1 - Oct 31
NO2 14,119 30 59 Jan 1 - Aug 31
O3 24,914 45 74 Jan 1 - Sep 30
CO 14,581 21 35 Jan 1 - Sep 1

The integrated dataset, after merging pollutants by location and date and apply-
ing quality control procedures, comprised 125 site-month observations across 27 unique
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monitoring locations, providing comprehensive spatial coverage of California’s diverse air
quality conditions from the South Coast Air Basin to the San Francisco Bay Area and
Central Valley.

2.2 Demographic and Environmental Justice Data

Environmental justice analysis requires integration of air quality data with demo-
graphic and socioeconomic indicators. We compiled county-level demographic data from
the U.S. Census Bureau’s American Community Survey (ACS) 5-year estimates [31], in-
cluding median household income, minority population percentage, and total population.
Environmental justice communities were identified using EPA guidance and California’s
CalEnviroScreen methodology, defined as areas with both high pollution burden and
vulnerable demographics characterized by low income or high minority percentage.

2.3 Multi-Port Proximity Analysis

A critical component of this study involved a comprehensive analysis of proximity
to major California port facilities as an environmental justice factor. We systematically
examined proximity effects for six major California ports:

1. Port of Los Angeles/Long Beach Complex (33.74°N, 118.25°W) - The largest
port complex in the United States, handling primarily containerized cargo

2. Port of Oakland (37.80°N, 122.32°W) - Major San Francisco Bay Area container
port serving northern California markets

3. Port of San Francisco (37.79°N, 122.42°W) - Bay Area general cargo, cruise, and
specialty port facility

4. Port of Richmond (37.93°N, 122.38°W) - Bay Area bulk cargo and petroleum
products facility

5. Port of Stockton (37.95°N, 121.29°W) - Central Valley inland port serving agri-
cultural and manufacturing regions

6. Port of San Diego (32.71°N, 117.17°W) - Southern California general cargo and
naval facility

This comprehensive multi-port approach recognizes that California’s diverse geogra-
phy and extensive port infrastructure require sophisticated proximity analysis.
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Figure 1: Comprehensive multi-port proximity analysis across California’s
major port facilities. Panel (a) shows monitoring stations colored by nearest
port, demonstrating regional clustering around different port facilities. Panel
(b) shows PM2.5 concentrations versus distance to nearest port, revealing
pollution relationships using our comprehensive port proximity methodol-
ogy. GTWR analysis using nearest port distances demonstrates strong model
performance (R² = 0.584) and reveals significant regional variations in envi-
ronmental justice impacts.

2.4 Data Processing and Quality Control

Data processing involved several quality control steps to ensure analytical reliability
and spatial accuracy. Raw pollutant concentrations were filtered to remove negative val-
ues, extreme outliers (beyond the 99.5th percentile), and measurements flagged for quality
issues. Temporal aggregation was performed to create monthly averages by monitoring
site, reducing measurement noise while preserving spatiotemporal patterns relevant for
GTWR analysis.

Missing data were handled through listwise deletion to maintain data integrity for
the integrated analysis, with sensitivity analysis confirming that missing data patterns
did not introduce systematic bias. Coordinate transformation was performed using the
pyproj library to convert geographic coordinates (WGS84) to the California State Plane
coordinate system (EPSG:3310) for accurate distance calculations and spatial analysis.

Port proximity distances were calculated using the Haversine formula to compute
great-circle distances between monitoring stations and port facilities:

d = 2r arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

))
where r is Earth’s radius (6,371.0088 km), ϕ represents latitude, λ represents longitude,
and ∆ indicates coordinate differences between monitoring stations and port locations.

For each monitoring station, we calculated distances to all six major port facilities and
identified the nearest port for optimal proximity analysis. This comprehensive proximity
analysis revealed that 76 stations (61%) were closest to Los Angeles area ports, while 16
stations were closest to Oakland, 19 to Stockton, 8 to Richmond, and 6 to San Diego
ports.
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3 Kriging

Kriging interpolation provides optimal spatial prediction of environmental variables
based on the principle of spatial autocorrelation, where nearby locations tend to have sim-
ilar values. This geostatistical method is particularly valuable for environmental analysis
as it provides both predicted values and associated uncertainty estimates, enabling com-
prehensive spatial risk assessment.

3.1 Theoretical Framework

Kriging is a family of geostatistical interpolation methods that predict values at un-
sampled locations based on weighted averages of nearby observations, with weights de-
termined by the spatial correlation structure of the data [27]. The method assumes that
the spatial variation of a regionalized variable can be characterized by a semivariogram,
which describes the degree of spatial dependence as a function of distance.

For a regionalized variable Z(s) observed at locations s1, s2, . . . , sn, ordinary kriging
provides the Best Linear Unbiased Predictor (BLUP) at any unsampled location s0:

Ẑ(s0) =
n∑

i=1

λiZ(si)

where λi are the kriging weights determined by solving the kriging system:
γ11 γ12 · · · γ1n 1
γ21 γ22 · · · γ2n 1
...

...
. . .

...
...

γn1 γn2 · · · γnn 1
1 1 · · · 1 0




λ1

λ2
...
λn

µ

 =


γ10
γ20
...

γn0
1


where γij represents the semivariogram value between locations si and sj, and µ is the
Lagrange multiplier ensuring unbiasedness.

The semivariogram is typically modeled using theoretical functions such as the spher-
ical model:

γ(h) =

{
C0 + C

[
3h
2a

− h3

2a3

]
if h ≤ a

C0 + C if h > a

where h is the lag distance, C0 is the nugget effect representing measurement error and
micro-scale variation, C is the sill representing the total variance, and a is the range
parameter indicating the distance at which spatial correlation becomes negligible.

The kriging variance provides a measure of prediction uncertainty:

σ2
K(s0) =

n∑
i=1

λiγi0 + µ.

This theoretical framework enables both optimal spatial prediction and quantification
of prediction uncertainty, which is crucial for environmental risk assessment and policy
decision-making in environmental justice contexts.
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3.2 Applications

We implemented ordinary kriging using the PyKrige library in Python, applying the
methodology to create comprehensive pollution surfaces across California. The analysis
encompassed multiple spatial scales and temporal periods to capture diverse aspects of
air quality patterns and their environmental justice implications.

Multi-Pollutant Spatial Analysis Comprehensive kriging analysis was performed
for all four pollutants (PM2.5, NO2, O3, CO) using site-averaged concentrations across
the study period. Spherical semivariogram models were fitted for each pollutant through
maximum likelihood estimation, with model parameters optimized using cross-validation
procedures to ensure robust spatial prediction performance.

Figure 2: Comprehensive kriging interpolation maps for four criteria pollu-
tants across California. Each panel shows spatial concentration patterns with
monitoring station locations and EPA health standard reference lines where
applicable. The analysis reveals distinct spatial patterns reflecting different
pollution sources and atmospheric processes, with PM2.5 and NO2 showing
urban concentration patterns while O3 exhibits more complex regional distri-
bution.

The kriging analysis revealed distinct spatial patterns for each pollutant that provide
insights into environmental justice implications. PM2.5 concentrations showed relatively
uniform distribution across the study region (3.42-12.13 µg/m³), with slight elevation
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in urban areas and near major transportation corridors. The spatial pattern revealed
persistent gradients that may contribute to differential exposure across communities.

NO2 exhibited pronounced spatial gradients with higher concentrations in urban areas,
particularly near major highways and industrial facilities, reflecting the importance of
traffic-related emissions. O3 patterns demonstrated the complex photochemical nature
of this secondary pollutant, with concentrations varying based on precursor availability,
meteorological conditions, and atmospheric transport processes. CO showed localized
elevation near major emission sources, particularly in urban areas with heavy traffic
congestion.

Temporal Evolution Analysis To examine temporal patterns in pollution distribu-
tion and their implications for environmental justice assessment, we performed kriging
analysis for three representative months (January, April, and June 2024), enabling as-
sessment of seasonal variations and temporal consistency of spatial patterns.

Figure 3: Temporal evolution of PM2.5 spatial patterns across three repre-
sentative months in 2024. Consistent color scaling enables direct comparison
of seasonal variations and identification of temporally persistent pollution
patterns. The analysis reveals seasonal variations with generally higher con-
centrations during winter months, while maintaining consistent spatial corre-
lation structures.

The temporal analysis revealed important seasonal variations in pollution patterns
with implications for environmental justice assessment. Higher concentrations were gen-
erally observed during winter months due to enhanced atmospheric stability, increased
residential heating, and reduced atmospheric mixing. However, the spatial correlation
structure remained relatively consistent across seasons, indicating stable underlying pol-
lution source patterns that persist over time.

These temporal patterns have important implications for environmental justice anal-
ysis, as seasonal variations may disproportionately affect certain communities based on
housing quality, heating sources, and occupational exposure patterns. Communities with
limited resources may experience enhanced exposure during winter months due to inad-
equate housing insulation or reliance on pollution-generating heating sources.
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4 Geographically and Temporally Weighted Regres-

sion

Geographically and Temporally Weighted Regression (GTWR) extends traditional
regression analysis by allowing model coefficients to vary across both space and time,
providing insights into local and temporal variations in relationships between dependent
and independent variables. This methodology is particularly valuable for environmental
justice analysis as it can reveal how pollution relationships vary across different commu-
nities and time periods.

4.1 Theoretical Framework

GTWR builds upon Geographically Weighted Regression (GWR) by incorporating
temporal non-stationarity alongside spatial heterogeneity [26]. The method recognizes
that relationships between variables may vary not only across space but also over time,
which is particularly relevant for environmental processes subject to seasonal patterns,
policy changes, or evolving source characteristics.

The GTWR model can be expressed as:

yi = β0(ui, vi, ti) +

p∑
k=1

βk(ui, vi, ti)xik + εi

where yi is the dependent variable at observation i, (ui, vi, ti) represent the spatial coordi-
nates and time of observation i, βk(ui, vi, ti) are the spatiotemporally-varying coefficients,
xik are the independent variables, and εi is the error term assumed to be independently
and identically distributed.

The GTWR coefficients are estimated using weighted least squares, where weights are
determined by spatiotemporal proximity to the regression point:

β̂(ui, vi, ti) = (XTW(ui, vi, ti)X)−1XTW(ui, vi, ti)y

where W(ui, vi, ti) is a diagonal weight matrix with spatiotemporal weights that decrease
with distance from the regression point.

The spatiotemporal weights are typically calculated using a combined distance metric:

d2ST =

(
dS
hS

)2

+

(
dT
hT

)2

where dS is the spatial distance, dT is the temporal distance, and hS and hT are the
spatial and temporal bandwidths, respectively, which control the degree of spatial and
temporal smoothing.

Common kernel functions for calculating weights include the bi-square kernel:

wij =

{(
1− d2ST,ij

)2
if dST,ij < 1

0 otherwise

and the Gaussian kernel:

wij = exp

(
−
d2ST,ij
2

)
.
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Bandwidth selection is critical for GTWR performance and is typically optimized
using information criteria such as the corrected Akaike Information Criterion (AICc):

AICc = 2n log(σ̂) + n log(2π) + n

{
n+ tr(S)

n− 2− tr(S)

}
where n is the sample size, σ̂ is the estimated standard deviation of residuals, and tr(S)
is the trace of the hat matrix, representing the effective number of parameters in the
model.

4.2 Applications

We implemented GTWR analysis using the modern MGTWR library, examining rela-
tionships between PM2.5 concentrations and four predictor variables: standardized NO2,
O3, CO concentrations, and distance to nearest port facilities (incorporating our multi-
port proximity analysis). The analysis utilized 125 site-month observations across 27
monitoring locations over eight months in 2024.

Model Specification and Optimization The GTWR model was specified with log-
transformed PM2.5 as the dependent variable to ensure normality of residuals and inter-
pretability of coefficients as percentage changes. Predictor variables were standardized
using z-score normalization to facilitate coefficient comparison and ensure numerical sta-
bility in the optimization process.

The optimal GTWR model achieved excellent performance with an adjusted R2 of
0.584 and AICc of 83.1. The spatial bandwidth was optimized at 90.6 km and the
temporal bandwidth at 3.8 days, indicating local spatial relationships and short-term
temporal dependencies. These bandwidth values suggest that pollution relationships vary
significantly over relatively short spatial and temporal scales, highlighting the importance
of local-scale analysis for environmental justice applications.

Table 2: GTWR Model Performance Summary

Performance Metric Value

Adjusted R2 0.584
AICc 83.1
Spatial Bandwidth (km) 90.6
Temporal Bandwidth (days) 3.8
Number of Observations 125
Number of Predictors 4
Model Type MGTWR
Kernel Function Bi-square

Spatiotemporal Coefficient Analysis The GTWR analysis revealed significant spa-
tial heterogeneity in pollution relationships, with coefficients varying substantially across
California regions. This spatial heterogeneity has important implications for environmen-
tal justice, as it suggests that the same pollution sources may have different impacts on
PM2.5 concentrations in different communities.
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Figure 4: GTWR-based environmental justice analysis showing spatially-
varying coefficient patterns and demographic comparisons. The analysis re-
veals systematic differences in pollution relationships between environmental
justice and non-environmental justice communities, with particular emphasis
on port proximity effects and pollutant interaction patterns.

NO2 coefficients showed generally positive relationships with PM2.5 across the study
region, reflecting common combustion sources and atmospheric processes. However, the
magnitude of these relationships varied spatially, with stronger relationships observed in
urban areas and weaker relationships in rural or coastal areas where different atmospheric
chemistry may prevail.

O3 coefficients exhibited complex spatial patterns with both positive and negative
relationships observed across different regions. This pattern reflects the complex photo-
chemistry of ozone formation and its varying relationships with PM2.5 precursors under
different atmospheric conditions. In some areas, high ozone concentrations may indicate
photochemical conditions that also promote secondary PM2.5 formation, while in other
areas, ozone may serve as an indicator of atmospheric conditions that disperse PM2.5.

CO coefficients demonstrated strong spatial heterogeneity, with positive relationships
in urban areas and negative relationships in some rural regions. This pattern likely
reflects different pollution source mixes and atmospheric processing environments, with
urban areas showing stronger co-variation between CO and PM2.5 due to shared traffic
sources.

11



Environmental Justice Coefficient Comparison A critical finding of the GTWR
analysis was the systematic difference in pollution relationships between environmental
justice (EJ) and non-environmental justice communities. This analysis addresses a key
research question about whether environmental justice communities experience different
pollution sensitivities that may contribute to health disparities.

Table 3: GTWR Coefficient Comparison: Environmental Justice vs Non-
Environmental Justice Communities

Predictor Variable EJ Communities Non-EJ Communities Difference

NO2 (scaled) 0.198 0.249 -0.051
O3 (scaled) 0.294 0.087 0.207
CO (scaled) 0.091 -0.085 0.175
Nearest Port Distance (scaled) -0.252 -0.134 -0.118

The most striking finding was the 1.9 times stronger negative relationship between
port proximity and PM2.5 in environmental justice communities (-0.252 vs -0.134), in-
dicating that these communities experience disproportionately higher pollution impacts
from port-related activities. This finding provides quantitative evidence for environmen-
tal justice concerns about the cumulative impacts of transportation infrastructure on
vulnerable communities.

Additionally, environmental justice communities showed fundamentally different rela-
tionships for O3 and CO. Environmental justice communities exhibited positive O3-PM2.5

relationships (0.294), while non-environmental justice communities showed positive but
weaker relationships (0.087), indicating a 3.4 times stronger relationship in environmen-
tal justice areas. This pattern may reflect differences in precursor concentrations, at-
mospheric processing rates, or meteorological conditions between different community
types.

The CO coefficient patterns showed divergent relationships, with environmental jus-
tice communities showing positive relationships (0.091) and non-environmental justice
communities showing negative relationships (-0.085). This pattern suggests that CO
serves as a better indicator of PM2.5 sources in environmental justice communities, pos-
sibly due to shared traffic sources or different atmospheric processing environments.

Multi-Port Proximity Analysis Integration The comprehensive multi-port prox-
imity analysis provided an enhanced understanding of port proximity effects across Cal-
ifornia’s diverse geography. When distances were calculated to the nearest ports, the
spatial distribution of port proximity effects revealed important differences in regional
patterns:

� Los Angeles/Long Beach area: 9.70 µg/m³ mean PM2.5 (highest pollution
levels)

� Oakland area: 5.58 µg/m³ mean PM2.5

� Richmond area: 5.16 µg/m³ mean PM2.5

� Stockton area: 6.54 µg/m³ mean PM2.5
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� San Diego area: 6.10 µg/m³ mean PM2.5

These regional differences suggest that different port facilities may have varying en-
vironmental justice impacts, possibly due to differences in cargo types, traffic patterns,
industrial activities, or local meteorological conditions. The higher pollution levels in the
Los Angeles/Long Beach area reflect the massive scale of port operations and associated
transportation infrastructure.

Methodological Advantages The comprehensive multi-port analysis demonstrates
the importance of sophisticated proximity measures in environmental justice research.
Our analysis provides an enhanced understanding of port proximity effects across Cali-
fornia’s diverse geography and regional pollution patterns.

This methodological approach has important implications for environmental justice
policy and research. Environmental justice screening tools and regulatory assessments can
benefit from comprehensive multi-source proximity analysis to capture regional differences
in pollution source impacts. Similarly, cumulative impact assessments that account for
diverse pollution source proximity provide more accurate risk characterizations.

The finding that environmental justice communities show 1.9 times stronger port
proximity effects, combined with our comprehensive proximity measurement approach,
provides robust evidence of environmental justice disparities related to port proximity.
This has important implications for both scientific understanding of environmental justice
issues and policy interventions designed to address pollution disparities.

5 Conclusion

This study applied advanced geospatial methods—Geographically and Temporally
Weighted Regression (GTWR) and kriging interpolation—to examine environmental jus-
tice (EJ) disparities in California air quality, with special attention to multi-port prox-
imity effects. Our findings underscore the importance of spatiotemporal modeling and
proximity-aware approaches in assessing pollution exposure in vulnerable communities.

We identified Los Angeles, San Bernardino, and San Joaquin counties as EJ commu-
nities with both high pollution burdens and vulnerable demographics. These areas expe-
rienced 77.1% higher PM2.5 concentrations compared to non-EJ areas. GTWR revealed
distinct pollution sensitivities in EJ communities, including a 1.9Ö stronger negative cor-
relation between PM2.5 and port proximity, suggesting greater exposure to port-related
emissions. Differences in pollutant interaction coefficients (e.g., O3 and CO) further high-
light varying atmospheric processes or source contributions across EJ and non-EJ areas.

Methodologically, the integration of GTWR and kriging proved superior to global
models by capturing local variability and seasonal dynamics. Notably, 34 stations were
closer to ports other than Los Angeles, emphasizing the need for multi-port analysis. Krig-
ing interpolation produced spatial pollutant surfaces and uncertainty maps, revealing that
although no areas exceeded EPA standards, 0.8% of the state experienced statistically
significant pollution hotspots.

These findings have direct policy implications: they support the use of region-specific
environmental justice screening tools, stricter regulation around port communities, and
the development of localized interventions. The evidence that EJ communities bear dis-
proportionate burdens despite staying under regulatory thresholds calls for more nuanced
assessments of risk and equity.
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Future research should explore long-term trends, incorporate additional pollution
sources (e.g., highways, refineries), and extend analyses to other regions and pollutants.
Emerging technologies—low-cost sensors, satellite remote sensing, machine learning, and
personal exposure monitoring—offer promising directions for improving spatial resolution,
predictive accuracy, and real-time decision support. Ultimately, integrating these inno-
vations into regulatory frameworks and community-based tools will be key to advancing
environmental justice outcomes.

Supplemental Materials

The dataset and code used in this study are available on GitHub at:
https://github.com/Red256/air-pollution-and-environmental-justice.
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