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Abstract

This study uses beta regression and random intercept beta regression to

model normalized Player Efficiency Rating (PER) in the NBA based on

pre-draft data from college basketball and the NBA Combine. Using 463

players with complete statistics, we identify key predictors of efficiency,

including position, weight, rebounds, field goal percentage, height, and

vertical leap. The models account for the bounded nature of PER and

capture longitudinal trends with player-specific random effects. Results

highlight positional role as the strongest determinant, with guards and

wings outperforming centers.

Keywords: beta regression, random intercept model, longitudinal analysis, player effi-

ciency rating (PER), NBA draft prediction, college basketball, NBA Combine, positional

roles, sports performance modeling

1 Introduction

1.1 Background

The National Basketball Association (NBA) is one of the most closely analyzed professional

sports leagues, with teams, analysts, and researchers relying on box score metrics and

advanced statistics to evaluate performance, project future success, and inform decisions on

drafts, contracts, and roster construction. Predicting professional outcomes is challenging,

as players must be evaluated in distinct but connected contexts – college basketball, the

NBA Combine, and early NBA competition.
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This study forecasts the Player Efficiency Rating (PER) in the NBA using college and

NBA Combine data. Unlike traditional measures that emphasize scoring or isolated skills,

PER incorporates all-around contributions derived from box-score statistics. By linking

college performance, NBA pre-draft skills measurements (NBA Combine), and NBA early

career outcomes, we identify which factors most effectively predict professional efficiency.

This framework provides evidence-based information on player development and supports

draft evaluation for front offices, scouts, and researchers.

On the offensive side, players generate value through their shooting efficiency, playmak-

ing, ability to draw fouls, offensive rebounding, and avoidance of turnovers. Defensively,

value is created through proper positioning, contesting and blocking shots, generating

steals, rebounding, and limiting fouls. Because basketball is fluid and interconnected, a

player’s success cannot be defined by isolated actions. Instead, effectiveness comes from

the ability to contribute across multiple phases of the game.

1.2 Literature Review

Predicting NBA draft success has moved from subjective judgments to data-driven models.

Early approaches focused on physical traits measured at the NBA Combine. Teramoto

et al. (2018) found that NBA Combine size measurements such as height, wingspan, and

standing reach were strongly associated with defensive performance (Defensive Box Plus-

Minus, DBPM; r = 0.545), highlighting the partial predictive value of physical data [1].

However, as Kannan et al. (2018) emphasized, advanced efficiency metrics such as field goal

percentage (FG) and assists per game consistently outperformed raw physical statistics and

totals in predicting NBA success, especially for guards and forwards [2].

Edwards et al. (2015) contributed with support vector machine (SVM) and principal

component analysis (PCA) models and discovered that it is easier to predict whether a

player will reach a basic threshold of success than to estimate their exact NBA Win Shares

(WS). They concluded, in agreement with others, that historical performance and develop-

mental context are more reliable than raw physical tests [3]. Similarly, Moxley and Towne

(2015) challenged the value of “hidden potential” and found, using growth mixture models

(GMMs), that college achievement and environment (rather than NBA Combine perfor-

mance) predict which group a player will end up in, whether a role player or a potential

star [4].

Greene (2015) bolstered this by showing that per-possession and rate-based metrics

were superior for forecasting success, a theme echoed across recent studies [5].
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Recent advancements have combined statistical analysis and subjective expert input.

Mamonov (2023) used Extreme Gradient Boosting (XGBoost) to integrate college perfor-

mance with mock draft rankings, demonstrating that this hybrid approach predicted player

role tiers (Star, Above Average, Bench) with 75% accuracy, far better than using draft or-

der alone [6]. Likewise, Kannan et al. (2018) highlighted that the combination of draft slot

and college production improved F1-score from 0.54 (physical data alone) to 0.72 [2].

A recent leap is the Relevance-Based Prediction (RBP) method introduced by Cza-

sonis et al. (2023), which selects historically similar players and dynamically adapts its

predictions and features for each prospect, offering both individualized forecasts and clear

reliability signals [7]. This method, like the broader trend, values transparency in explaining

which data points and precedents shape the prediction.

1.3 Data Description

The dataset for this analysis was compiled from Kaggle and Basketball-Reference.com,

combining collegiate, NBA Combine, and NBA performance metrics to predict long-term

player success using a custom Player Efficiency Rating (PER), which summarizes overall on-

court productivity. The initial pool included 3,840 NCAA Division I players from Kaggle,

which was merged with NBA Combine-style physical and athletic data (height, weight,

wingspan, vertical leap, sprint times) from Basketball-Reference.com, reducing the sample

to 1,350 players with complete college and NBA Combine records. Filtering for players

who appeared in at least one NBA regular-season game resulted in 692 players with full

college, NBA Combine, and professional data. Significant missing values, particularly in

NBA Combine metrics and advanced college stats, were addressed through manual cleaning

and consolidation. Variables with over 30% missingness were excluded, reducing 53 original

variables to 28 core predictors. After removing any remaining incomplete observations, the

final beta regression dataset included 463 unique players. For the longitudinal analysis,

each player-season was treated as a separate observation, with the season converted to a

numeric variable (SZNAB) indicating the sequential year of a player’s career.
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Table 1: Description of Variables in the Dataset.

Variable Description Variable Description

HGT Player’s standing height in

inches

LPVERT Max vertical jump in inches

WGT Player’s weight in pounds LANE Lane agility drill time in sec-

onds

BMI Body Mass Index (kg/m2) SPRINT 3
4 court length sprint time

WNGSPN Wingspan in inches MP Total minutes played in college

STNDVERT Max vertical jump FG Field goals made in college

FG% Field goal percentage in col-

lege

FGA Field goals attempted in col-

lege

3P Three-pointers made in college 3PA Three-pointers attempted in

college

3P% Three-point percentage FT Free throws made in college

FT% Free throw percentage FTA Free throws attempted in col-

lege

ORB Offensive rebounds TRB Total rebounds in college

PF Personal fouls AST Assists made in college

PPG Points per game in college RPG Rebounds per game in college

APG Assists per game PER Player Efficiency Rating

PER normalized Scaled PER POS Primary playing position

GP NBA games played SZNAB NBA season year

NPTS NBA points per game NAST NBA assists per game

NREB NBA rebounds per game NSTL NBA steals in a season

NBLK NBA blocks in a season NTOV NBA turnovers in a season

MPG NBA minutes per game SZNAB The NBA season the player

played in

The distributions of the variables in Table 1 is shown in the Appendix of Figure 2 which

shows a bar graph for the categorical Position variable and histograms for the continuous

predictors. The variables exhibit regular distributions without extreme outliers. In this

analysis, we decided to model and predict the professional player efficiency (PER) of an

NBA player using the collected data from NBA statistics, college data, and NBA Combine

measurements. PER is used to measure a player’s performance not only in a game but

throughout the season. Looking at NBA statistics both offensively and defensively, we
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found that the most important statistics that decide a player’s performance are points,

rebounds, assists, steals, blocks, and turnovers. In our data, we had the game averaged for

points, rebounds, and assists, but for steals, blocks, and turnovers, we had the total amount

throughout the season. Therefore, we had to divide by the number of games they played for

these values. The way the NBA calculates this formula depends on the league’s averages

in that particular season; however, these averages are not displayed publicly and are rather

calculated internally without an exact formula being released as to how to calculate it.

For this reason, we decided to create our own formula using weights to ensure that each

statistic is used fairly in the formula. Firstly, to regulate the number of minutes someone

would play, we used the average number of minutes played in the league (36) and divided

it by the minutes per game each specific player played. Then, since points are a larger

number, on average, they are multiplied by 0.8 to make them smaller. Similarly, rebounds

and assists are values that are generally between 0-12, and so we decided to inflate their

values to match the points by 1.5 times and 1.2 times their original value, respectively.

Steals and blocks are usually smaller values around 0-5, and we decided to inflate those

values by 2 and 1.7, respectively, to account for their smaller values. Lastly, we subtracted

the turnovers since those hurt the player’s performance as they hurt their team’s chances

to win; once again, this is a smaller value, causing us to double its value in the formula.

To sum it up, the specific formula is:

PER =
36

MPG
×
(
0.8NPTS + 1.5NREB + 1.2NAST + 2

NSTL

GP
+ 1.7

NBLK

GP
− 2

NTOV

GP

)
.

Since these variables are used to compute the formula for PER, they are not regressed

and used to predict the PER, and we take them out of the list of predictors for both the

Beta Regression and Longitudinal model.

2 Theoretical Framework

2.1 Beta Regression Model

Suppose we observe n sets of measurements of predictor variables x1, . . . , xk and a contin-

uous response variable y that takes values strictly between 0 and 1. The beta regression

model, originally proposed in [8], is well-suited for modeling such responses. It assumes
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that y follows a beta distribution with probability density function

f(y) =
yµϕ−1(1− y)(1−µ)ϕ−1

B(µϕ, (1− µ)ϕ)
, 0 < y < 1,

where the normalizing constant

B(µϕ, (1− µ)ϕ) =

∫ 1

0

yµϕ−1(1− y)(1−µ)ϕ−1 dy

is the beta function. The location parameter µ depends on the predictors x1, . . . , xk through

a logistic function:

µ =
exp{β0 + β1x1 + · · ·+ βkxk}

1 + exp{β0 + β1x1 + · · ·+ βkxk}
,

and the scale (or precision) parameter ϕ is a positive real number. For this distribution,

the mean and variance of y are

E(y) = µ, and Var(y) =
µ(1− µ)

1 + ϕ
.

Thus, µ represents the expected value of the response, while ϕ allows modeling the variance

independently of the mean.

The parameters in this regression model are β0, . . . , βk and ϕ. They are estimated from

data using the maximum likelihood method. The likelihood function for the dataset is the

product of the individual densities:

L(β0, . . . , βk, ϕ | y1, . . . , yn) =
n∏

i=1

yµiϕ−1
i (1− yi)

(1−µi)ϕ−1

B(µiϕ, (1− µi)ϕ)
,

and the corresponding log-likelihood function is

lnL(β0, . . . , βk, ϕ) =
n∑

i=1

[
(µiϕ−1) log yi+((1−µi)ϕ−1) log(1−yi)− logB(µiϕ, (1−µi)ϕ)

]
where

µi =
exp{β0 + β1x1i + · · ·+ βkxki}

1 + exp{β0 + β1x1i + · · ·+ βkxki}
.

Maximum likelihood estimates of the parameters are obtained by numerically maximizing

this log-likelihood function. In practice, iterative optimization algorithms are used, as

closed-form solutions are not available due to the complexity of the beta function. Once

the regression slopes are estimated, µ̂ can be computed as:

µ̂ =
exp{β̂0 + β̂1x1 + · · ·+ β̂kxk}

1 + exp{β̂0 + β̂1x1 + · · ·+ β̂kxk}
,

and ϕ is estimated by a numeric value ϕ̂.
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2.2 Hypothesis Testing for Regression Parameters

In beta regression, inference on the regression coefficients β0, . . . , βk is typically performed

to assess whether each predictor has a significant effect on the response. The null hypothesis

for each coefficient is

H0 : βj = 0 versus H1 : βj ̸= 0, j = 0, . . . , k,

which corresponds to testing whether the associated predictor has no effect on the mean

of the response variable. A common approach for testing includes the Wald test with the

test statistic defined as

Wj =
β̂2
j

Var(β̂j)
,

which is asymptotically chi-square distributed with 1 degree of freedom under H0.

2.3 Random-Intercept Beta Regression for Longitudinal Data

Consider longitudinal measurements yij collected from n subjects (i = 1, . . . , n) at Ji time

points (j = 1, . . . , Ji). Let xij1, . . . , xijk denote covariates associated with observation yij.

To account for correlation among repeated measurements within the same subject, we

introduce a subject-specific random intercept ui. The random-intercept beta regression

model is

yij | ui ∼ Beta(µijϕ, (1− µij)ϕ),

µij =
exp{β0 + β1xij1 + · · ·+ βkxijk + βk+1timej + ui}

1 + exp{β0 + β1xij1 + · · ·+ βkxijk ++βk+1timej + ui}
, i = 1, . . . , n, j = 1, . . . Ji,

where the random intercepts ui’s are assumed independent and normally distributed with

a constant variance σ2
u.

Conditional on ui, the observations yij are independent, with mean and variance

E(yij | ui) = µij, Var(yij | ui) =
µij(1− µij)

1 + ϕ
.

Next, the parameters of this model, β0, . . . , βk, ϕ, and σ2
u are estimated via a likelihood

method. The conditional likelihood for subject i is

Li(β, ϕ | ui) =

ai∏
j=1

y
µijϕ−1
ij (1− yij)

(1−µij)ϕ−1

B(µijϕ, (1− µij)ϕ)
,
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and the marginal likelihood is obtained by integrating over the random intercept ui:

Li(β0, . . . , βk, ϕ, σ
2
u) =

∫ ∞

−∞

[
Ji∏
j=1

y
µijϕ−1
ij (1− yij)

(1−µij)ϕ−1

B(µijϕ, (1− µij)ϕ)

]
1√
2πσ2

u

exp
(
− u2

i

2σ2
u

)
dui.

The full marginal likelihood for all subjects is

L(β0, . . . , βk, ϕ, σ
2
u) =

n∏
i=1

Li(β0, . . . , βk, ϕ, σ
2
u).

Maximum likelihood estimates of the parameters are obtained by numerically maximizing

the marginal log-likelihood function. Because the integral over ui does not have a closed

form, numerical methods are typically used in practice.

2.4 Goodness-of-Fit Deviance Test

How well a model fits the data can be assessed using the deviance test (also called the

asymptotic likelihood ratio test).[9] In this test, the null hypothesis is that the null model

has a better fit, and the alternative hypothesis is that the fitted model is better. For the

beta regression described in Subsection 2.1, the null model is the intercept-only model

without predictors. In mathematical terms, the hypotheses are stated as follows:

H0 : β1 = β2 = · · · = βk = 0 (intercept-only model is adequate),

H1 : at least one βj ̸= 0 (fitted model with predictors fits better).

The test statistic, called the deviance, is defined as

deviance = −2
(
lnL(null model)− lnL(fitted model)

)
where L(·) denotes the maximized likelihood under a given model. Large values of the

deviance indicate that the fitted model improves the likelihood substantially compared

with the null model, that is, the predictors are needed.

Under H0, the test statistic has asymptotically a chi-squared distribution, and the p -value

is calculated as the upper-tail probability above the test statistic. The number of degrees

of freedom is the difference between the number of parameters of the fitted and null mod-

els. The fitted model has k + 2 parameters (β0, . . . , βk, and ϕ), and the null model has 2

parameters (β0 and ϕ), thus the number of degrees of freedom is k.
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For the random-intercept model introduced in Subsection 2.3, the natural test is whether

the variance of the random intercept equals zero. The hypotheses are

H0 : σ2
u = 0 (no random intercept)

H1 : σ2
u > 0 (random intercept is present and improves fit).

The nominal difference in parameter count is 1 (the variance parameter). Thus, the

deviance has an approximate chi-squared distribution with one degree of freedom.

3 Applications and Results

This section presents the application of the beta regression model for cross-sectional data

and the random-intercept beta regression model for longitudinal data. These models are

used to analyze the relationship between player characteristics and the normalized Player

Efficiency Rating with multiple predictors, using the formula defined in Subsection 1.3.

3.1 Beta Regression

The beta regression model was initially fitted using all predictors. Non-significant predictors

were then removed through backward elimination, resulting in a final model that includes

only the significant predictors, shown in Table 2. Additionally, player position (POS) was

included as a categorical variable. To facilitate interpretation, the Center (C) position was

set as the reference (baseline) category. Consequently, all position coefficients represent the

estimated effect relative to Centers, holding other variables constant.
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Table 2: Significant Predictors in Beta Regression Model.

Predictor (Std. Units) Estimate (log-odds) Std. Error z value p-value

(Intercept) -1.618 0.264 -6.118 < 0.001

WGT 1.250 0.605 2.065 0.039

RPG 0.170 0.054 3.156 0.002

MPG -0.254 0.045 -5.587 < 0.001

FG 0.309 0.101 3.046 0.002

POSPG 1.231 0.352 3.495 < 0.001

POSPG-SG 1.299 0.346 3.758 < 0.001

POSSF 0.561 0.257 2.181 0.029

POSSG 0.896 0.297 3.021 0.003

POSSG-PG 0.976 0.353 2.762 0.006

POSSG-SF 0.695 0.291 2.384 0.017

The reduced fitted model with all predictors significant at the 5% level is given by

logit
(
Ê(PER)

)
= −1.618 + 1.250 ·WGT + 0.170 · RPG − 0.254 ·MPG

+0.309 · FG + 1.231 · POSPG + 1.299 · POSPG-SG + +0.561 · POSSF

+0.896 · POSSG + 0.976 · POSSG-PG + 0.695 · POSSG-SF,

and ϕ̂ = 9.64. The p-value for the deviance test is less than 0.001, indicating a good fit.

Key results reveal the following:

• Positively Related: A one–unit increase in player weight is linked to higher log-odds

of PER, suggesting that heavier players tend to have greater efficiency. Rebounds

per Game (RPG) also show a positive relationship, where a one–standard deviation

increase in RPG corresponds to a noticeable boost in PER, indicating that players

who rebound more in college generally achieve higher efficiency. A one-SD increase

in FG is associated with players with more field goals score more and have a better

chance at being more efficient. Finally, positional effects reveal a clear hierarchy:

guards and wing players (PG, PG-SG, SG, SG-SF) demonstrate significantly higher

efficiency compared to the baseline group of centers, showing that certain positions

are consistently associated with higher PER values.
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• Negatively Related: A one-SD increase in MPG shows a decrease in the log-odds of

PER, highlighting the more a player plays, the lower their PER will be. This shows

how fatigue and health plays a crucial role in a player’s success in the NBA.

Model evaluation using a 90/10 train/test split (416 training observations and 47 test

observations) yielded strong predictive performance. The prediction accuracy of the model

within the tolerance range of 10, 15, and 20 shows that 14.9% of predictions fall within

±10% of the observed values, 31.9% within ±15%, and 34.0% within ±20%. Figure 1 shows

the predicted versus actual plot with the smoothed predicted curve generally following the

trajectory of the actual values, while deviations reflect individual variability and player-

specific effects in the beta regression model.

Figure 1: Predicted vs. actual normalized PER for testing set.
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3.2 Random Intercept Beta Regression for Longitudinal Data

To account for the longitudinal structure of repeated player observations, a random-intercept

beta regression model was fitted. This specification allows for player-specific baseline effi-

ciency while estimating the effects of physical and performance predictors on normalized

efficiency ratings. Direct components of the PER formula were excluded to avoid circular-

ity. The set of predictors was then reduced via backward elimination to include only those

significant at the 5% level. The estimated regression coefficients are presented in Table 3

that follows.

Table 3: Significant Predictors in Random-Intercept Beta Regression Model.

Predictor Estimate Std. Error z value p-value

Intercept 18.319 8.717 2.102 0.036

HGT -0.290 0.113 -2.564 0.010

WGT 0.061 0.021 2.934 0.003

FG% 1.787 0.570 3.134 0.002

FT% 0.957 0.317 -3.015 0.003

RPG 0.040 0.015 2.638 0.008

STNDVERT 0.030 0.015 2.041 0.041

POSPG 0.927 0.243 3.810 < 0.001

POSPG-SG 1.047 0.237 4.410 < 0.001

POSSF 0.489 0.177 2.759 0.006

POSSF-PF 0.568 0.197 2.883 0.004

POSSG 0.685 0.207 3.315 < 0.001

POSSG-PG 0.811 0.244 3.327 < 0.001

POSSG-SF 0.663 0.198 3.339 < 0.001

Season (SZNAB) 0.034 0.003 12.433 < 0.001

The fitted reduced random-intercept beta regression model has the form:

logit
(
Ê(PER)

)
= 18.319 − 0.290 · HGT + 0.061 ·WGT + 1.787 · FG% + 0.957 · FT%

+0.040·RPG + 0.030·STNDVERT + 0.927·POSPG + 1.047·POSPG-SG + 0.489·POSSF

+0.568·POSSF-PF+0.685·POSSG+0.811·POSSG-PG+0.663·POSSG-SF+0.034·SZNAB.
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The estimates of the additional parameters of this model are ϕ̂ = 19.178 and σ̂2
u = 0.213.

The 95% Confidence Interval for the variance is (0.1818, 0.2490). The deviance test in this

case has the p-value less than 0.05, confirming a decent fit of the model.

Interpretation of the estimated regression coefficients yields the following conclusions:

• Positively Related: Several variables show significant positive effects on PER, high-

lighting key factors that contribute to player efficiency. Player weight (WGT) is

positively associated with PER, suggesting that heavier players, potentially due to

greater strength or ability to finish around the basket, tend to achieve higher effi-

ciency. Shooting performance is also important: both field goal percentage (FG%)

and free throw percentage (FT%) are strong positive predictors, reflecting the value

of scoring efficiency in overall performance. Rebounds per game (RPG) and standing

vertical (STNDVERT) demonstrate that athleticism and the ability to secure posses-

sions significantly enhance efficiency, likely due to their contributions on both offense

and defense. Positional effects reveal a clear hierarchy, with guards and wings (PG,

PG-SG, SG, SG-SF) consistently outperforming centers, emphasizing the greater im-

pact of perimeter-oriented roles in modern NBA schemes. Finally, the season variable

indicates that efficiency tends to improve over time, possibly reflecting player devel-

opment, experience, and adaptation to professional play.

• Negatively Related: Height (HGT) shows a significant negative effect on PER, indi-

cating that taller players generally have lower efficiency scores in this model. This

may reflect the challenges that very tall players face in mobility, shooting consistency,

and defensive versatility compared to guards and wings. While height can provide

advantages near the basket, the negative relationship suggests that, on average, taller

players may be less efficient in contributing across multiple facets of the game, partic-

ularly in perimeter-oriented or fast-paced playstyles. This underscores that physical

traits alone do not guarantee high efficiency and that positional and skill-related

factors play a critical role.

When evaluating predictions against actual PER values in the testing set, 15.3% of predic-

tions fell within ±10% of the observed values, 21.0% within ±15%, and 30.3% within ±20%.
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These findings align with prior research identifying college rebounding, field goal per-

centage, and assists as key predictors of NBA success [2, 5]. Our model extends this by

capturing nonlinear effects and highlighting the relative influence of these variables. The

dominance of guards and wings mirrors Mamonov’s (2023) XGBoost analysis, which found

perimeter players overrepresented among top performers [6]. Consistent with Moxley and

Towne (2015), NBA Combine metrics such as sprint time and lane agility were not inde-

pendent predictors once college performance was accounted for [4]. Overall, these results

reinforce that college production is a stronger predictor of professional efficiency than phys-

ical traits alone.

4 Future Research Direction

While this study highlights the utility of beta regression and random-intercept beta re-

gression models in predicting NBA efficiency from college and NBA Combine data, several

avenues remain open for future exploration. One direction is to expand the dataset to

include more recent draft classes and international players, as their inclusion could improve

generalization across different styles of play. Another promising extension is to integrate

advanced tracking data, such as player movement and spacing metrics, which may cap-

ture aspects of efficiency not reflected in traditional box-score statistics. Methodologically,

alternative statistical approaches such as hierarchical Bayesian models or machine learn-

ing ensembles could be compared with the beta regression approach to evaluate gains in

predictive performance. Together, these directions would strengthen the robustness of pre-

dictive frameworks and enhance their practical relevance for scouts, analysts, and team

decision-makers.

Supplemental Materials

Both datasets used for fitting beta regression and random-intercept beta regression, along

with the R codes used to run the analysis in this study, are readily available in the GitHub

repository at https://github.com/areenjain09/per-prediction-regression.
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Appendix

Figure 2: Bar graph for the categorical predictor and histograms for all continuous predic-

tors in the dataset.

17


