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Abstract

Autism spectrum disorder (ASD) arises from socioeconomic, prenatal, perina-
tal, and environmental influences. Using data from the 2022-2023 National Sur-
vey of Children’s Health (N=82,068, ages 2 to 17), we built predictive models
with logistic regression, random forest, support vector machines, gradient boost-
ing, and neural networks. Gradient boosting and neural networks achieved the
best performance across accuracy, sensitivity, specificity, precision, F1l-score, and
AUC-ROC. Key predictors spanned socioeconomic, prenatal, and environmental
domains, highlighting the value of multifactorial modeling for ASD risk prediction.

Keywords: Autism spectrum disorder, machine learning, socioeconomic status, prenatal
and perinatal risk factors, environmental exposures, predictive modeling

1 Introduction

1.1 Background

Autism spectrum disorder (ASD) is a neurodevelopmental condition marked by difficulties
in social interaction and communication, along with limited interests and repetitive actions
[1]. The reported prevalence of ASD has continuously increased over recent decades. For
instance, in the United States, the prevalence of ASD was approximately 0.7% (1 in 150
children) in 2000, rising to about 2.8% (1 in 36 children) by 2020 [2]. The etiology of
ASD is complex and cannot be explained by a single factor; rather, it is known to involve
interactions between genetic and various non-genetic factors |3} 4.

1.2 Literature Review

Recent studies suggest a multifactorial interplay involving parental socioeconomic status
(SES), prenatal and perinatal conditions, and environmental exposures |5, 3, 6, |7, 4]. For
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example, large-scale population-based studies have reported varying relationships between
SES and ASD risk: some studies, such as a Taiwanese cohort study, indicated a positive
association between higher parental SES and ASD risk, potentially due to differential ac-
cess to diagnostic services or underlying biological and immunological factors associated
with higher SES [8]. Conversely, several U.S.-based population studies found increased
ASD prevalence among children from lower-income households and with lower maternal
educational attainment, suggesting SES may influence ASD risk through environmental
stressors or differential access to healthcare and early interventions [9).

Prenatal and perinatal risk factors have also been robustly documented. Meta-analyses
have consistently reported associations between ASD and maternal infections, pre-pregnancy
obesity, diabetes, preterm birth, and birth complications, indicating these conditions can
disrupt critical neurodevelopmental processes [6, |10]. Furthermore, systematic reviews of
environmental epidemiology have estimated that approximately 40-50% of ASD liability
is attributable to non-genetic factors, including prenatal and early-life exposure to air pol-
lution, pesticides, and heavy metals, further highlighting the importance of environmental
factors in ASD etiology [11].

Previous studies have independently explored socioeconomic, prenatal, perinatal, and
environmental factors associated with ASD, but few have comprehensively integrated these
domains into a predictive framework. To fill this critical research gap, there is a clear
need for an integrated approach that simultaneously considers the interactions among so-
cioeconomic status (SES), prenatal and perinatal conditions, and environmental exposures.
Therefore, the primary aim of our study is to develop and validate a comprehensive ma-
chine learning-based prognostic model that integrates SES, prenatal and perinatal factors,
and environmental exposures, to enhance the prediction and understanding of ASD risk.

1.3 Data Description

This study utilizes child health data from the National Survey of Children’s Health (NSCH),
a comprehensive annual cross-sectional survey conducted by the Child and Adolescent
Health Measurement Initiative (CAHMI) [12]. The NSCH collects nationally representative
data covering a wide range of topics, including demographic characteristics, socioeconomic
factors, prenatal and perinatal conditions, environmental exposures, family health history,
and child health outcomes. For this research, we specifically combined data from the
two most recent survey years (2022 and 2023) to enhance statistical power, encompassing
responses from a total of 104,995 children aged 0-17 across the United States.

1.3.1 Sample and Survey Design

The NSCH utilizes a stratified, address-based sampling design targeting households across
all 50 states and Washington D.C. One child per household is randomly selected, and the
survey is completed by a parent or guardian familiar with the child’s health history. After
excluding children under the age of 2 years, as ASD diagnoses are uncommon below this age,
and addressing missing data issues (21.84% of cases), our final analytical sample included
82,068 children aged 2-17 years. Each child’s data record includes sampling weights that
ensure generalization to the broader U.S. child population.



1.3.2 Variables Collected

The NSCH dataset covers critical variables across multiple domains:

e Socioeconomic Factors: Household income relative to the federal poverty level, parental
education, family structure, and health insurance status.

e Prenatal Factors: Maternal smoking, alcohol, and drug use during pregnancy, mater-
nal health conditions (diabetes, hypertension), and prenatal care utilization.

e Perinatal Factors: Birth weight categories, gestational age (preterm status), birth
complications, breastfeeding history, and multiple birth status.

e Environmental Factors: Household smoking, vaping, and broader neighborhood con-
ditions (safety, housing quality).

e Familial Factors: Family medical history of ASD or developmental delays, parental
mental health, and parental age at child’s birth.

e Child Health and ASD Outcome: Doctor-diagnosed ASD status, along with other
health conditions (e.g., ADHD, developmental delays).

1.3.3 Data Quality and Preprocessing

To ensure robust analyses, detailed data preprocessing, including handling missing val-
ues through listwise deletion for substantial missing data and multivariate imputation by
chained equations (MICE) for isolated cases was performed. Categorical variables were
encoded numerically using dummy encoding, and continuous variables were standardized
(z-scored). Due to class imbalance in ASD outcomes (3.29% prevalence), stratified sam-
pling methods were employed. The cleaned dataset was sorted into a training set (70%,
n=>57,448) and a testing set (30%, n=24,620), maintaining a consistent prevalence of ASD
across subsets (3.29%). Detailed data processing rsteps (initial sample size to final dataset
partitioning) are visually summarized in Figure 1.

1.4 Paper Organization

This paper is structured into four primary sections: Introduction, Methods, Results, and
Discussion. The Methods section details the predictive modeling frameworks employed,
including logistic regression, random forest, support vector machines (SVM), gradient-
boosted machines (GBM), and neural network models, alongside feature selection tech-
niques. The Results section presents the predictive performance of each model and identi-
fies significant predictive factors for ASD. Finally, the Discussion Section interprets these
key factors in the context of the existing literature, discusses implications, limitations, and
suggests directions for future research.
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Figure 1: Data Processing Flowchart for NSCH Study

2 Methods

We used the preprocessed analytic dataset from the NSCH 2022-2023 combined files (see
Sections 1.3-1.4 for data source, variable definitions, survey design, and initial preprocess-
ing). From the original sample (& 100,000 children), observations with extensive missing-
ness in key predictors (= 22%) were excluded, yielding a final analytic cohort of 82,068
children. We applied a stratified 70:30 train—test split that preserved ASD prevalence
(=~ 3.3%) in both sets; the overall data-processing workflow is summarized in Figure 1.

2.1 Exploratory Analysis and Feature Selection

We conducted descriptive summaries and visualizations; between-group differences (ASD
vs. non-ASD) were screened using chi-square tests for categorical variables and t-tests for
continuous variables. Given the large sample size, we reported standardized mean dif-
ferences (SMDs) alongside p-values to assess effect sizes. Potential multicollinearity was
examined via correlation matrices. Guided by these diagnostics, we performed feature
reduction within the modeling pipeline using LASSO and recursive feature elimination
(RFE).

2.2 Modeling and Training Procedure

To predict Autism Spectrum Disorder (ASD), this study developed and compared five
different machine learning models: Logistic Regression, Random Forest, Support Vector
Machine (SVM), Gradient Boosting, and a Neural Network. To ensure a scientifically rig-
orous and fair comparison, all models were trained and evaluated using a strict k-fold
cross-validation procedure. This method prevents information leakage by ensuring
that the model is tested only on data it has never seen before. Each model’s hyperparam-



eters were tuned, and the best-performing version was selected based on the Area Under
the ROC Curve (AUC) metric [13].

1. Logistic Regression

Logistic Regression is a foundational statistical method used to model the probability of a
binary outcome. For this study, it calculates the probability of an ASD diagnosis based on
a linear combination of the input variables. The model is defined by the equation:

1
1+exp(— (Bo+ > 8;X;))

This model served as our interpretable baseline. Its primary advantage is transparency;
the coeflicients (8;) directly show the strength and direction (positive or negative) of each
variable’s influence on the outcome. This provided a clear benchmark for comparison with
more complex models [14].

PY=1|X)=

2. Random Forest

A Random Forest is a powerful ensemble learning method that operates by constructing a
multitude of decision trees. A final prediction is made by taking a majority vote from all
the individual trees in the "forest.”

g(x) = arg mca,xz 1{Ty(z) = ¢}

We included this model for its ability to capture complex, non-linear relationships
and interaction effects between variables that a linear model like logistic regression
might miss. It is a robust method that is less prone to overfitting than a single decision
tree [15] |13].

3. Support Vector Machine (SVM)

The SVM is a classification algorithm that works by finding the optimal hyperplane that
best separates the two data groups (ASD and non-ASD). For complex, non-linear data, it
uses the "kernel trick” to map the data to a higher dimension where a linear separation is
possible. We used the Radial Basis Function (RBF) kernel:

i (wai +0)>1 and K(z,7;) = exp( — ||z — xj||2)

The SVM was chosen to provide a fundamentally different classification approach.
Unlike models based on probability or decision rules, the SVM is based on finding a
maximum-margin boundary, offering a unique perspective for our comparative analysis
116, 17].

4. Gradient Boosting

Gradient Boosting is another advanced ensemble technique that builds decision trees se-
quentially. Each new tree is trained to correct the errors made by the previous ones,
effectively learning from its mistakes.

Fo(r) = Fpa(z) + nhm(z)



This model was selected for its high predictive accuracy. By focusing on residual errors
in a step-by-step manner, it can capture very subtle patterns and create a highly effective
predictive model, which we hypothesized would perform strongly in this study [18, [13].

5. Neural Network

Inspired by the structure of the human brain, our Neural Network (a multilayer perceptron)
consists of interconnected layers of nodes. Each layer transforms the data it receives,
allowing the model to learn increasingly abstract and complex patterns.

oD = (WD 4 p0)

The Neural Network was implemented for its ability to automatically learn and model
high-order interactions within the data without them being explicitly defined. This
makes it a powerful tool for discovering hidden relationships that other models might not
identify [19} 20].

2.3 Evaluation Metrics

The primary performance metric was ROC-AUC, interpreted as the probability that a
randomly selected ASD case receives a higher predicted risk than a randomly selected
non-case (1.0 perfect, 0.5 random) [13]. Secondary metrics—accuracy, sensitivity (recall),
specificity, precision, and F1-—were computed in a consistent fashion across cross-validation
and the held-out test set.

2.4 Variable-importance Integration

To facilitate cross-model interpretation, we normalized model-specific importance sum-
maries (e.g., permutation importance for tree ensembles, absolute standardized coefficients
for logistic regression, RFE/SVM rankings) to comparable ranks and aggregated them into
a combined heatmap. This procedure emphasizes features consistently prioritized across
distinct inductive biases, while deferring all empirical rankings to the Results.

2.5 Class Imbalance Considerations

Given the low ASD prevalence, we used class weighting when available, favored threshold-
agnostic discrimination (AUC), and reported thresholded metrics to reflect sensitivity—specificity
trade-offs appropriate for potential screening scenarios.

3 Results

Table (1| presents baseline characteristics of the study population, highlighting significant
differences between children diagnosed with Autism Spectrum Disorder (ASD) and those
without ASD.
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Children with ASD were significantly older on average, with a mean age of 9.98 years
(SD =+ 4.66), compared to 8.33 years (SD =+ 5.30) among non-ASD children (p < 0.001).
The ASD group predominantly consisted of males, accounting for 76.8% compared to 50.9%
in the non-ASD group (p < 0.001, Standardized Mean Difference [SMD] = 0.559). Fur-
thermore, the prevalence of breastfeeding was lower among children with ASD (71.4% vs.
84.7%, p < 0.001, SMD = 0.325). ASD cases also demonstrated higher rates of prematurity,
allergy history, exposure to household smoking, prenatal and perinatal complications, and
lower socioeconomic status, indicated by a lower family poverty ratio (all p-values < 0.001,
SMD ranging from 0.150 to 0.267).

Figure [2] illustrates a correlation heatmap that reveals important relationships among
selected variables. Notably, maternal education exhibited a strong positive correlation with
family income, suggesting that higher maternal educational attainment is associated with
better economic conditions. Additionally, preterm birth was negatively correlated with
birth weight, aligning with established clinical knowledge.
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Figure 2: Correlation Heatmap of Variables Associated with Autism Spectrum Disorder
(ASD).

Figure (3] illustrates the variable importance rankings generated by the five machine
learning models used in this study: Logistic Regression, Random Forest, Support Vector
Machine (SVM), Gradient Boosting Machines (GBM), and Neural Networks. Each model
produced slightly different importance scores. Gradient Boosting concentrated on a smaller
set of variables with high weight, whereas Logistic Regression and SVM distributed impor-
tance more evenly across multiple predictors. To avoid focusing on model-specific charts,
the results were further summarized in a consolidated heatmap.
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Figure 3: Variable Importance Across Machine Learning Models Predicting Autism Spec-
trum Disorder (ASD).

Figure [4] synthesizes per-model variable-importance rankings (encoded on a 1-5 scale,
with darker red indicating higher rank) across the five learners, enabling direct compari-
son. Two demographic/biologic features—child sex (male) and child age—recur at or near
the top across diverse modeling families (logistic regression, SVM, gradient boosting, and
random forest), indicating a stable signal that is robust to differences in functional form.
A second tier comprises family and perinatal context: parental age at birth and parental
mental health are repeatedly prioritized across multiple models, while prematurity and
birth weight contribute more moderately. Together, the heatmap points to a compact set
of core predictors that persist despite algorithmic differences, consistent with the study’s
multifactorial framing.

Model-specific emphases help contextualize this consensus. Tree ensembles (gradient
boosting, random forest) concentrate importance on age-related variables, reflecting their
capacity to capture thresholds and interactions; linear-margin learners (logistic regression,
SVM) foreground sex and age while distributing weight across additional covariates; and
the multilayer perceptron elevates socioeconomic context by assigning high rank to mater-
nal education and, to a lesser extent, the family poverty ratio, consistent with nonlinear
combinations among SES and clinical history. Because the heatmap encodes relative ranks
rather than raw scales, these patterns should not be interpreted causally; nevertheless, con-
vergence across orthogonal modeling paradigms strengthens confidence that biologic (sex,
age) and family context (parental age, parental mental health), with complementary socioe-
conomic signals, form the central feature set for ASD risk stratification in this survey-based
setting.

Taken together, these results indicate that child sex and child age are consistently
strong predictors across all models. In addition, parental age at birth and parental men-
tal health also received high scores, reinforcing their importance. The consistency across
diverse models provides robust evidence that both biological characteristics (such as age
and sex) and family-related factors (such as parental age and mental health) are critical in
predicting ASD risk. Comparing results across multiple models thus allows a more reliable
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Figure 4: Heatmap of Variable Importance Scores Across Five Machine Learning Models
Predicting Autism Spectrum Disorder (ASD).

identification of the factors that truly matter.

Model performance was evaluated using Receiver Operating Characteristic (ROC) curve
analysis, shown in Figure [f] All five models performed better than random classification,
with Gradient Boosting Machines achieving the highest performance (AUC = 0.986). Lo-
gistic Regression and Neural Networks followed closely, while Random Forest exhibited very
high sensitivity (0.980) but extremely low specificity (0.048), leading to frequent misclassi-
fication of non-ASD cases. Logistic Regression and SVM produced more balanced results,
though not as strong overall as Gradient Boosting.

Table [2| reports six performance metrics—accuracy, sensitivity, specificity, precision,
F1-score, and ROC-AUC—for all five models. As prespecified, ROC-AUC serves as the pri-
mary, threshold-agnostic discrimination metric, while the other metrics describe threshold-
level trade-offs for each learner. Across models, precision values are uniformly high (approx-
imately 0.97-0.98), whereas sensitivity and specificity vary more widely, reflecting different
operating points.

Gradient boosting shows the strongest discrimination (AUC = 0.986) and a high F1-score
(0.919), combining precision 0.974 with sensitivity 0.870. Its accuracy is 0.851, and its
specificity (0.310) indicates that, at the evaluated threshold, many non-ASD cases are
flagged as positive relative to its recall for ASD cases. These values summarize a model
that strongly ranks ASD cases above non-cases while adopting a recall-oriented operating
point.

For random forest, sensitivity is very high (0.980) but specificity is very low (0.048),
yielding nominal accuracy of 0.949 and the highest Fl-score in Table [2 (0.974). Because
F1 aggregates precision and recall only, the combination of high recall and high precision
produces a large F1 despite the low specificity. This profile documents a strongly recall-
favoring operating point.

The remaining models exhibit more balanced sensitivity—specificity pairs. Logistic re-
gression reports AUC = 0.705, sensitivity = 0.641, specificity = 0.683, precision = 0.983,
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Figure 5: ROC Curves Comparing Machine Learning Models for Predicting Autism Spec-
trum Disorder (ASD).

F1 = 0.776, and accuracy = 0.643. SVM shows AUC = 0.654 with sensitivity = 0.699
and specificity = 0.549 (precision = 0.979, F1 = 0.816, accuracy = 0.695). MLP reports
AUC = 0.690 with sensitivity = 0.652 and specificity = 0.647 (precision = 0.982, F1 =
0.784, accuracy = 0.652). These summaries indicate that, relative to the tree ensembles, the
linear-margin and neural-network models operate closer to a balanced sensitivity—specificity
setting at the evaluated threshold.

Overall, Table [2| complements Figure |5 by quantifying threshold-level trade-offs while
preserving the AUC-based ranking. In a low-prevalence setting, AUC and F1 are informa-
tive summary measures, and the reported sensitivity and specificity clarify the direction of
each model’s operating point.

Table 2: Performance Metrics of Machine Learning Models for Predicting Autism Spectrum
Disorder (ASD).

Model Accuracy Sensitivity Specificity Precision Fl-score AUC
Logistic Regression 0.643 0.641 0.683 0.983 0.776  0.705
Random Forest 0.949 0.980 0.048 0.968 0.974  0.680
SVM 0.695 0.699 0.549 0.979 0.816  0.654
Gradient Boosting 0.851 0.870 0.310 0.974 0.919  0.986
Neural Network 0.652 0.652 0.647 0.982 0.784  0.690

In summary, the results from Figures 3 to 5 and Table 2 demonstrate that the most crit-
ical predictors of ASD include child sex (male), child age, parental mental health, parental
age at birth, and maternal education level. Among the tested models, Gradient Boost-
ing consistently delivered the highest predictive accuracy, highlighting the potential of
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advanced machine learning techniques for understanding the interplay of biological and
socio-environmental factors in ASD.

4 Discussion

This study built and compared machine learning models for ASD risk using a nationally rep-
resentative survey dataset that combines demographic, socioeconomic, prenatal/perinatal,
environmental, and familial factors. Under a uniform, leakage-safe training and evalua-
tion pipeline, two predictors—child sex (male) and child age—consistently appeared as
the strongest signals across models, while family-context variables such as parental mental
health and parental age at birth were repeatedly prioritized. Socioeconomic indicators (e.g.,
maternal education, family poverty ratio) contributed additional information depending on
the modeling family, indicating that multiple domains provide complementary predictive
value.

Differences in model behavior help explain the patterns in Figure [, Tree ensembles
tended to assign their highest ranks to age-related variables; logistic regression and SVM
placed sex and age at the top while distributing weight over several additional covariates;
and the multilayer perceptron elevated socioeconomic indicators. Importantly, the heatmap
reports relative ranks within each model rather than effect sizes, so it is intended for com-
paring how predictors are prioritized across learners rather than for causal interpretation.

From a practical standpoint, the models operate on survey-like features and can there-
fore support low-cost, scalable pre-screening. Table[2]and Figure[5|show that sensitivity and
specificity trade off at the evaluated thresholds, while AUC summarizes threshold-agnostic
discrimination. In prospective use, settings that value early capture could favor higher
sensitivity, whereas settings that prioritize minimizing false positives could favor higher
specificity; selecting an operating point should be based on a bundle of metrics (AUC, F1,
sensitivity, specificity) rather than a single value.

This work has several strengths. First, it leverages a large, nationally representative
sample, improving generalizability. Second, all five learners were compared within the
same cross-validated pipeline, with preprocessing and feature selection refit inside folds
to minimize leakage and ensure a fair comparison. Third, variable-importance summaries
were normalized and aggregated to highlight signals that recur across distinct inductive
biases.

Limitations should also be acknowledged. The survey is cross-sectional and based on
parent report, which introduces potential misclassification and limits causal inference. ASD
prevalence is low (~3.3%), so class imbalance affects operating characteristics and can yield
sensitivity—specificity asymmetries. Validation was internal only, without external valida-
tion or calibration. Finally, subgroup performance (e.g., by sex, race/ethnicity, socioeco-
nomic strata) and fairness metrics were not assessed here.

Future work should include external validation on independent NSCH waves or clinical
cohorts; probability calibration (e.g., calibration curves, Brier scores); and decision-curve
analysis to quantify net benefit in realistic screening workflows. Reporting subgroup perfor-
mance and fairness metrics would clarify equity considerations. Model explainability (e.g.,
SHAP) can aid transparency. Pilot implementation in schools or community clinics could
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help define operating thresholds and referral pathways for a two-step workflow (pre-screen
— standardized screening).

In conclusion, readily collected features—including sex, age, parental mental health,
parental age at birth, maternal education, and perinatal indicators—carry substantial pre-
dictive signal for ASD at the population level. The proposed models are best positioned
to complement rather than replace existing screening tools, by prioritizing children for
standardized screening and specialist evaluation. Progress toward deployment will require
external validation, calibration, fairness auditing, and protocol development for threshold
selection and clinical integration.

Supplemental Materials

The source code and additional materials used in this study are available at the following
GitHub repository:
https://github.com/Annapark070705/ASD_Prognostic.git
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