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Abstract

This essay presents an expository overview of Buffon’s needle problem, a founda-
tional question in geometric probability. It covers both classical cases: the short
needle (length less than or equal to line spacing) and the long needle (length
greater than spacing), detailing the probability computations involved. The dis-
cussion then extends to notable generalizations, including needle drops on two-
and three-dimensional grids, and curved "noodles”. These extensions illustrate
the problem’s depth and its surprising link to 7, highlighting its continued rele-

vance in mathematics and probability theory.
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1 Introduction

Buffon’s Needle Problem stands as one of the earliest and most elegant examples of geomet-
ric probability. First posed in the 18th century by the French naturalist and mathematician
Georges-Louis Leclerc, Comte de Buffon, the problem connects the seemingly unrelated con-
cepts of geometry, probability, and calculus. The setup is simple yet profound: imagine
dropping a needle of length [ onto a floor marked with parallel lines spaced d units apart.

What is the probability that the needle will intersect one of these lines?

At first glance, the question appears to be a straightforward exercise in geometry. How-
ever, its solution reveals a surprising and deep connection to the mathematical constant 7.

Specifically, when the length of the needle is less than or equal to the spacing of the lines
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(I < d), the probability that the needle crosses a line is given by I This result not only
T

provides a fascinating method for estimating 7 through physical experimentation but also

lays the groundwork for the fields of integral geometry and Monte Carlo methods.

In this paper, we will explore the mathematical derivation of this probability, examine
Buffon’s original reasoning, and discuss the broader implications of this problem in mathe-
matics and statistics. Before diving into the details, it is helpful to understand the life and

work of the man behind the problem.

Georges-Louis Leclerc, Comte de Buffon, was born on September 7, 1707, in Montbard,
France. Although his father encouraged him to pursue a career in law, Buffon developed a
strong interest in mathematics. In 1723, he enrolled at the College of Godrans in Dijon, a
Jesuit-run institution. By 1728, he had shifted his focus to the sciences, moving to Angers
to study mathematics, medicine, and botany. In the early 1730s, Buffon traveled to Eng-
land, where he became a member of the Royal Society before returning to France following

his mother’s death.

Figure 1: Georges-Louis Leclerc, Comte de Buffon (1707 - 1788)

Buffon is best known for his monumental work Histoire Naturelle, a 36-volume encyclopedic
series that sought to catalog all known aspects of the natural world. He began publish-
ing the series in 1749 while serving as director of the Jardin du Roi (now the Jardin des

Plantes), a post he held from 1739 until his death. Despite criticism from religious au-



thorities, Buffon advanced progressive ideas, such as the immense age of the Earth and the

gradual transformation of species — concepts that would later influence evolutionary theory.

Among his many intellectual pursuits, one of Buffon’s most enduring contributions is the
Buffon’s Needle Problem, which he first conceived in 1733. [1] He worked on the problem
intermittently for 44 years before publishing a solution in 1777. [2] A proof of this problem,

along with Buffon’s original reasoning, is presented in this paper.

Buffon remained a towering figure in French science throughout the 18th century. He died
on April 16, 1788, just before the outbreak of the French Revolution. During the Revolu-
tion, his tomb was desecrated, his son was executed by guillotine, and his body was lost.
Today, only Buffon’s brain is known to survive and is located at the Museum of Natural

History in Paris.

Throughout this expositorial essay, I will go through the proof of Buffon’s needle problem,
an estimation of pi using the proof, extensions of the problem, and simulations of the proof

and extensions.

2 Theory of Buffon’s Needle Problem

Theorem. Let a plane be ruled with parallel lines spaced a distance d apart with d > 0.
A needle of length [, [ < d, is randomly dropped onto the plane such that its position and
orientation are uniformly distributed. Then the probability P that the needle intersects

one of the lines is given by:
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Proof: Refer to Figure 2 below. Let X be the random distance between the center of the
needle and the closest line. We know that X is uniformly distributed between 0 and d/2.
Take © as the random acute angle between the needle and parallel lines. The distribution
of © is uniform in [0,7/2]. Since X and @ are independent, their joint probability density

function can be found by multiplying the marginal densities to produce:
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Figure 2: Illustration of Buffon’s Needle Problem.

Further, the needle intersects a line if for any fixed angle © € [0,7/2], X does not exceed
[/2sin(0). To find the probability of this event, we need to integrate the joint density over

the region depicted in Figure 3 below, which we will integrate vertically.
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Figure 3: Area of Integration in Buffon’s Needle Problem.



We write

(1/2)sin@ 4
P—P(X<—Sln® / / —dxd@

w/2 /2
= 1 ismﬁd@ = 2t (—cos@) _ A
nd 0 2 wd

o wd

3 Theory of Generalized Buffon’s Needle Problem

The classical Buffon’s needle problem considers a needle whose length is shorter than the
distance between two parallel lines. A natural extension of this problem involves a needle

longer than the distance between the lines. This leads to the following theorem.

Theorem. Let a plane be ruled with parallel lines spaced a distance d apart with d > 0.
A needle of length [, [ > d, is randomly dropped onto the plane such that its position and
orientation are uniformly distributed. Then the probability P that the needle intersects

one of the lines is given by:

P = 2—l (1 —4/1— <?>2> + z arccos%l.
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Proof: Refer to the proof of the theorem in lSectionc%. If [ > d, we need to integrate over
the region 0 < © < 7/2 and 0 < X < min (5 sin ©, 5), schematically depicted as shaded

area in Figure 4 below.
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Figure 4: Area of Integration in Generalized Buffon’s Needle Problem.

First, we find at what point [/2sin © intersects d/2, that is, we solve [/2sin©® = d/2, and

get © = arcsin(d/l). Next, integrating vertically, we write the probability as the sum of

double-integrals over two non-overlapping regions:
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It is interesting to note that this probability approaches one as the length of the needle

increases (as it should be). Indeed, as | — oo,

= 2o ()2t = B2 1



4 Geometric and Analytical Generalizations of Buf-

fon’s Needle Problem

4.1 Buffon’s Needle on Two-dimensional Grid

Consider the plane covered by an infinite rectangular grid: vertical lines are spaced a > 0
apart and horizontal lines are spaced b > 0 apart, so that the cells are a x b rectangles.
A rigid needle of length ¢ is thrown at random. Its center is uniformly distributed over
the plane, and its orientation angle O is uniformly distributed in [0, 7), independent of the
center.

By symmetry, let X € [0,a/2] be the distance from the needle’s center to the nearest
vertical grid line, and Y € [0,b/2] the distance to the nearest horizontal line. Then

X ~ Unif(0,a/2), and Y ~ Unif(0,b/2),

independent of ©.

Theorem. In the case of a short needle, that is, [ < min{a, b}, the probability that the
needle intersects at least one grid line is given by:
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Proof: Let © € [0, 7/2] be the acute angle the needle makes with the horizontal line. The

distribution of © is Unif(0, 7/2) with the density function fg(0) =2/7, 0 < 6 < /2.
Now, the needle crosses a vertical line (event V') if and only if ([/2)cos® > X, and

it crosses a horizontal line (event H) if and only if (I/2)sin® > Y. We need to find

P(V U H). By the additive rule,

P(VUH) = P(V) + P(H) — P(V N H).

Conditioning on the value of ©, we get

(1/2) cos O [ cos®
PV ]©=0)=P(X <(l/2)cosb) o -
Averaging over 6 gives
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Similarly shown,
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Next, using independence of X and Y,

P(VAH|O=0) - lcosf . [sind _ l2COSQSin9'
a b ab
Thus, integrating over 6, we get
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Putting the terms together, we arrive at the final expression
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Corollary. For a square grid with spacing d (a = b = d),
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4.2 Buffon’s Needle on Three-dimensional Grid

Consider a space partitioned by an infinite rectangular grid of planes along the width,
length, and height directions. The planes separating the width are spaced a > 0 apart,
those separating the length are spaced b > 0 apart, and those separating the height are
spaced ¢ > 0 apart. Thus, each elementary cell of the grid is a cuboid of volume a x b X c.
A rigid needle of length [ is thrown at random. Its center is uniformly distributed within
the space, and its orientation is uniformly distributed over the unit sphere, independent of
the center.

Theorem. Assuming that the short-needle condition holds, that is, I < min{a,b, ¢}, the
probability that the needle intersects at least one grid plane is given by:

P—ll—l—l—l—l _2[2 1+1+1 n 3
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Proof: Let X € [0,a/2] be the distance from the needle’s center to the nearest width-

separating plane, Y € [0,b/2] the distance to the nearest length-separating plane, and
Z € [0, ¢/2] the distance to the nearest height-separating plane. Then

X ~ Unif(0,a/2), Y ~ Unif(0,b/2), and Z ~ Unif(0, ¢/2),

independent of the orientation.



The orientation of the needle is described by the random unit vector (Uy, Us, Us) uni-

formly distributed on the unit sphere. The conditional crossing events are:

Needle crosses width planes (event W) iff (1/2)|U;] > X,
Needle crosses length planes (event L) iff (1/2)|Us]| >Y,
Needle crosses height planes (event H) iff (1/2)|U;] > Z.

Conditioned on the orientation, we have

(L/2)|U:] _ U]
P(W = =
(W 1th) a/2 a ’
and similarly,
(1/2)|Us] _ U|Us] (1/2)|Us] _ U|Us]
(L]02) b/2 p (H | Us) c/2 c
1
Averaging over the uniform sphere, where ]E[|Uz|} =5 where i = 1,2, 3, gives
PW)= o B(L)=o. B(H)=
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Next, we compute probabilities of pairwise intersections. Conditioned on orientation,

|0 | |Us|
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Conditioned on orientation, the probability of the triple intersection is
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A spherical integral shows that E[|U]|Us||Us|] = e hence
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Finally, by the additive rule,
PWULUH) =PW)+PWL)+PH)—-PWNL) —PWnNH) —P(LNH)
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Corollary. For a cubic grid with spacing d (i.e., a = b = ¢ = d), the formula simplifies to

30 27 3
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5 Simulations of Buffon’s Needle Experiment

To complement the theoretical results, we developed C++ programs to simulate Buffon’s
Needle experiments, estimate crossing probabilities, and approximate the value of 7. The

source code is available in the GitHub repository referenced in the supplemental materials.

One-dimensional Setting

In the first program, the user specifies the number of trials (restricted to multiples of 1000),
the needle length [, and the line spacing d. For our experiments, we fixed [ = d = 1 and
varied the number of trials. The program executes batches of 1000 simulations, where in
each trial a random angle 6 and a random distance x from the needle’s center to the nearest
line are generated. A crossing occurs whenever

x < g cos(6).

At the end of each batch, the crossing probability is computed. This procedure is
repeated (trials/1000) times, and the resulting probabilities are stored. To reduce noise,
the values are sorted, the smallest and largest 2.5% are discarded, and the mean of the
remaining values is taken as the estimated probability.

Using these steps, we ran 10,000,000 iterations to calculate the empirical probability of
crossing. Our estimate was 0.636633, compared with the theoretical value 2/m ~ 0.636619.
The resulting error was 0.000014, whereas the theoretical error is expected to be on the
order of 1/4/10,000,000 ~ 0.000316. Thus, the observed accuracy was substantially better
than predicted.
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Using the second program, which extends the first, an estimate of 7 is obtained as ([6], [7],

[8]):
2

average probability
Running this code with 100,000,000 iterations produced the estimate 7 = 3.141599,
with an absolute error of less than 0.00001, well below the expected error of 0.0001.

T =

These results demonstrate that the simulation provides an accurate Monte Carlo ap-

proximation of 7, achieving convergence to five decimal places with 10® iterations.

Two-dimensional Setting

The first program can be extended to a two-dimensional grid. The logic is the same as
before, but now two distances are considered: x, the distance to the nearest vertical line,
and y, the distance to the nearest horizontal line. The crossing condition becomes

l l
z < o) cos(f) or y< B sin(6).

We applied this program with 10,000,000 iterations for the case { = a =b = 1. The re-
sulting probability was 0.954941, compared with the theoretical value 3/7 & 0.954929. The
absolute error was 0.000012, whereas the expected error is on the order of 1/4/10,000,000 &~
0.000316. Thus, the program performed more than a magnitude better than predicted.

This two-dimensional extension can also be used to estimate m whenl=a=b=c=1

because the probability is 3/7.

Three-dimensional Setting

The first program was further extended to a three-dimensional cube. The logic is the same
as before, but now with three distances and corresponding variables: z to the nearest
vertical plane, y to the nearest horizontal plane, and z to the nearest width plane. The
random variables Uy, Uy, and Us are defined using 6, zcomp (used in place of ¢, since
employing ¢ produced probabilities larger than expected), and r. The crossing condition
becomes

l

)
a;géUl, or yggUQ’ or z< =Us.

DN | =~

We used this program to run 10,000,000 iterations with [ = a = b = ¢ = 1. The program
yielded 0.942945, compared to the exact value % — % ~ 0.942957. The absolute error of

0.000012 is far smaller than the estimated Monte Carlo error of 0.000316, indicating that
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the simulation was significantly more accurate than expected.

This three-dimensional extension can also be used to estimate 7 whenl =a=5b=c =1,

3
since the corresponding probability is 5 1
T

6 Buffon’s ”Noodle” and Future Research Directions

In 1860, Joseph—Emile Barbier proposed a generalization of Buffon’s Needle Problem. [9]
[10] Instead of a straight needle, he considered a randomly dropped curved “noodle” of
fixed length [. The question is: what is the probability that such a noodle crosses at least
one line?

From Section 2, we know that for a straight needle of length [ and line spacing d, the

crossing probability is l
2

dm
For example, if we throw 100 unit-length needles with d = 1, we expect about 2/7x100 ~ 64
crossings.

Now, suppose we join x separate needles of length d into one longer needle. If 100 of
these composite needles are dropped, the expected number of crossings is about (200z) /7,
since each individual needle contributes independently.

Alternatively, suppose we have x separate needles of total combined length [ = d. Then
each individual piece has length [/x, giving each needle a crossing probability of 2{/(zdr).
With x needles, the total probability is

20 21 2
zdr  dn 7w
Thus, the expected fraction of crossings remains 2/m &~ 64%, regardless of how the needle
is subdivided.

A noodle can be modeled as the limiting case where a unit-length curve is divided into
infinitely many infinitesimal segments. Each segment behaves like a tiny needle, and by
the above argument, the overall crossing probability is still

21
dm
Although we did not implement this extension in our simulations due to its complexity,

it provides a natural direction for future computational experiments.
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Supplemental Materials

The C++ simulation code that supports the results presented in this paper is publicly
available on GitHub: https://github.com/MathStudent11626/BuffonNeedle.
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