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Abstract. In this paper we introduce and detail the Euler-Maclaurin Formula which re-
lates summations to their integral counterparts. We start with the Basel Problem which
inspired Euler to derive such a formula, delve into an inductive proof of the formula, and
then explore Euler’s constant and other applications of this formula.

1. Introduction

Our story begins with the Basel Problem, which although quite simple to state, had
stumped mathematicians for over 90 years. Euler solved the problem but it left him un-
satisfied; he had to find a general way to approximate sums like the Basel Problem. Thus
he later derived the Euler-Maclaurin formula in 1732, which was subsequently derived by
Maclaurin in 1742. However, when deriving the Euler-Maclaurin Formula, both Euler and
Maclaurin were unable to solve for the exact remainder term and it wasn’t until 1823 when
Poisson discovered it.

The formula can be used to approximate finite sums and infinite series by their integral
counterparts and conversely approximate integrals by finite sums. More specifically, an
estimation of

∑n
i=m f(i) can be found through the integral

∫ n

m
f(t)dt with an error term that

can be expressed through the Bernoulli numbers and a remainder term expressed through
the Bernoulli Periodic Functions. Euler derived this formula to approximate many of the
converging infinite series that he solved [3]. In its general form, it can be written as:

b∑
n=a

f(n) =

∫ b

a

f(t)dt+
k∑

r=0

(−1)r+1Br+1

(r + 1)!

(
f (r)(b)− f (r)(a)

)
+Rk

where

Rk =
(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f
(k+1)(t)dt,

under the condition that f(x) is k times differentiable on the interval [m,n] for all integers
k ≥ 0. The Rk represents the remainder term and we’ll go more in-depth into its notation
later.

2. Basel Problem

The Basel Problem asks for the sum of the reciprocals of the squares of the positive
integers, or

∞∑
n=1

1

n2
=?

1
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We can quickly test that it converges by showing that

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+

1

72
+

1

82
+ . . .

is less than
1

12
+

1

22
+

1

22
+

1

42
+

1

42
+

1

42
+

1

42
+

1

82
+ . . .

which converges to 2.

Here Euler decided to express the coefficient of x3 in the infinite expansion of sinx in 2 ways.
First, he expressed sinx as the Maclaurin series

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

and clearly the coefficient of x3 is −1
6
.

Next, he used the Weirstrass factorization to express

sinx = ax(x+ π)(x− π)(x+ 2π)(x− 2π) . . . = ax
∞∏
1

(x2 − (nπ)2).

This implies that

a =
sinx

x

1

(x2 − π2)(x2 − (2π)2)(x2 − (3π)2) . . .
,

, and combined with limx→0
sinx
x

= 1,

a =
1

[−(π)2][−(2π)2][−(3π)2)] . . .
.

After expansion, our result for the x3 coefficient is

−
∞∑
n=1

1

(nπ)2
.

Setting this equal to −1
6
with a bit of rearranging, we conclude that

∞∑
n=1

1

n2
=

π2

6
.

With this, Euler had solved the Basel Problem, and this gave him his biggest inspiration for
the Euler-Maclaurin formula.

3. Preliminaries

To understand the Euler-Maclaurin Summation Formula, we must first define the Bernoulli
numbers bn and the Bernoulli polynomials Bn(x). They both occur in a number of different
theorems involving analysis and number theory.
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3.1. Bernoulli Numbers. The Bernoulli numbers bn can be defined by the following power
series:

x

ex − 1
=

∞∑
n=0

bn
xn

n!
, where

or

bn =
dn

dxn
(

x

ex − 1
)

∣∣∣∣
x=0

.

Here are the first few coefficients bn:

n bn

0 1
1 -1

2

2 1
6

3 0
4 − 1

30

5 0
6 1

42

Notice how for any integer k > 1, b2k−1 = 0, and how bn is negative if divisible by 4, and
positive otherwise. This is trivialized by the Taylor expansion of x

ex−1
. There happens to be

no simple pattern to the Bernoulli numbers, but a good approximation is

b2n ≈ (−1)n−14
√
πn(

n

πe
)2n.

3.2. Bernoulli Polynomials. In a similar fashion, we can define the Bernoulli Polynomial
for nonnegative integers n as such:

zezx

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
.

There are 4 important properties about the Bernoulli Polynomials.
Endpoint Property:

Bn(1) =
n∑

j=0

(
n

j

)
Bj = Bn = Bn(0), n ≥ 2.

Differentiation:

B′
n(t) =

n−1∑
j=0

(n− j)

(
n

j

)
Bjt

n−j−1 = nBn−1(t), n ≥ 1.

Integration: ∫ 1

0

Bn(t)dt =
1

n+ 1

∫ 1

0

B′
n+1(t)dt = 0, n ≥ 1.

Upper Bound:

|B2r(t)| ≤ |B2r| , r ≥ 0.
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A sketch of the Upper Bound is as follows:

Proof. To prove this upper bound, let’s first define the Periodic Bernoulli Function. Now
define the Periodic Bernoulli Function as such, where {x} = x− ⌊x⌋:

Pn(x) = Bn({x}).
We can express the remainder term Rp as

Rk =
(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f
(k+1)(t)dt,

Now let’s begin by repeatedly differentiating our Bernoulli polynomial. This gives

B(j)
n =

n!

(n− j)!
Bn−j(t), j = 0, 1, . . . , n, n ≥ 1,

implying

B(j)
n (0) = B(j)

n (1), j = 0, 1, . . . , n− 2.

Therefore, Pn ∈ Cn−2(R). Now let’s consider the Fourier series of Pn,

Pn(t) =
∞∑

k=−∞

cke
2πikt.

Since Pn(t) is real, c−k = c̄k. Letting ck = ak + ibk, we have a−k = ak and b−k = −bk. Thus,

Pn(t) = a0 + 2
∞∑
k=1

ak cos(2πikt) + 2
∞∑
k=1

bk sin(2πikt).

The coefficients are

ck =

∫ 1

0

Bn(t)e
−2πiktdt.

For k = 0,

c0 =

∫ 1

0

Bn(t)dt = 0, n ≥ 1,

and for other k we get

ck = [Bn(t)
e−2πikt

−2πik
]10 + n

∫ 1

0

Bn−1(t)e
−2πiktdt =

−n!

(2πik)n
= ak + ibk.

Thus, a0 = b0 = 0 and for values of k ̸= 0 we have different formulas for ak and bk as follows:

ak = (−1)r−1 (2r)!

(2πk)2r
, bk = 0, for n = 2r,

and

ak = 0, bk = (−1)r
(2r − 1)!

(2πk)2r−1
, for n = 2r − 1.
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From this, we can deduce that

P2r(t) = (−1)r−12(2r)!
∞∑
k=1

cos(2πkt)

(2πk)2r
,

and

P2r−1(t) = (−1)r2(2r − 1)!
∞∑
k=1

sin(2πkt)

(2πk)2r−1
.

We conclude the proof by piecing it all together as follows:

|B2r(t)| ≤ 2(2r)!
∞∑
k=1

1

(2πk)2r
= |P2r(0)| = |B2r|.

□

4. Proof of the Euler-Maclaurin Formula

4.1. Proof 1. We proceed with the proof by induction. To prove the formula for k = 0, we
first rewrite

∫ n

n−1
f(t)dt, where n is an integer, using integration by parts. We obtain∫ n

n−1

f(t)dt =

∫ n

n−1

d

dt

(
t− n+

1

2

)
f(t)dt =

(
t− n+

1

2

)
f(t)

∣∣∣∣n
n−1

−
∫ n

n−1

(
t− n+

1

2

)
f ′(t)dt

=
1

2
(f(n) + f(n− 1))−

∫ n

n−1

(
t− n+

1

2

)
f ′(t)dt.

Because t− n+ 1
2
= B1(t) on the interval (n− 1, n), this is equal to∫ n

n−1

f(t)dt =
1

2
(f(n) + f(n− 1))−

∫ n

n−1

B1(t)f
′(t)dt

From this, we get

f(n) =

∫ n

n−1

f(t)dt+
1

2
(f(n)− f(n− 1)) +

∫ n

n−1

B1(t)f
′(t)dt.

Now we take the sum of this expression for n = a+ 1, a+ 2, . . . , b, so that the middle term
on the right telescopes away for the most part:

b∑
n=a+1

f(n) =

∫ b

a

f(t)dt+
1

2
(f(b)− f(a)) +

∫ b

a

B1(t)f
′(t)dt,

which is the Euler-Maclaurin formula for k = 0, since B1 = −1
2
. Suppose that k > 0 and the

formula is correct for k − 1, that is

∑
a<n≤b

f(n) =

∫ b

a

f(t)dt+
k−1∑
r=0

(−1)r+1Br+1

(r + 1)!

(
f (r)(b)− f (r)(a)

)
+

(−1)k−1

k!

∫ b

a

Bk(t)f
(k)(t)dt.



6 ISAAC SUN

We rewrite the last integral using integration by parts, the fact that Bk is continuous for
k ≥ 2, and that B′

k+1(t) = (k + 1)Bk(t) for k ≥ 0 :∫ b

a

Bk(t)f
(k)(t)dt =

∫ b

a

B′
k+1(t)

k + 1
f (k)(t)dt

=
1

k + 1
Bk+1(t)f

(k)(t)

∣∣∣∣b
a

− 1

k + 1

∫ b

a

Bk+1(t)f
(k+1)(t)dt.

Using the fact that Bk(n) = Bk for every integer n if k ≥ 2, we see that the last term is
equal to

(−1)k+1Bk+1

(k + 1)!

(
f (k)(b)− f (k)(a)

)
+

(−1)k

(k + 1)!

∫ b

a

Bk+1(t)f
(k+1)(t)dt.

Substituting this and absorbing the left term into the summation yields

b∑
n=a

f(n) =

∫ b

a

f(t)dt+
k∑

r=0

(−1)r+1Br+1

(r + 1)!

(
f (r)(b)− f (r)(a)

)
+Rk.

4.2. Proof 2. Another way to prove the Euler-Maclaurin formula is by first showing that
the local version is true, and then expanding to the global version.

Lemma 4.1. For r ≥ 0 and F ∈ C2r+2[0, 1],∫ 1

0

F (t)dt =
1

2
(F (0) + F (1))−

r+1∑
k=1

B2k

(2k)!

(
F (2k−1)(1)− F (2k−1)(0)

)
+Rr

where

Rr =
1

(2r + 2)!

∫ 1

0

B2r+2(t)F
(2r+2)(t)dt

Proof. By applying integration by parts twice, we obtain∫ 1

0

F (t)dt =

∫ 1

0

B0(t)F (t)dt = [B1(t)F (t)]10 −
∫ 1

0

B1(t)F
′(t)dt

=
1

2
(F (0) + F (1))− 1

2
[B2(t)F

′(t)]
1
0 +

1

2

∫ 1

0

B2(t)F
′′(t)dt

=
1

2
(F (0) + F (1))− B2

2
(F ′(1)− F ′(0)) +R0,

which proves the formula for the r = 0 case. Now suppose r ≥ 1, and assume that the lemma
holds with r replaced by r − 1. Applying integration by parts twice, we obtain

Rr−1 =
1

(2r)!

∫ 1

0

B2r(t)F
(2r)(t)dt

=
1

(2r + 1)!

[
B2r+1(t)F

(2r)(t)
]1
0
− 1

(2r + 1)!

∫ 1

0

B2r+1(t)F
(2r+1)(t)dt

= − 1

(2r + 2)!

[
B2r+2(t)F

(2r+1)(t)
]1
0
+

1

(2r + 2)!

∫ 1

0

B2r+2(t)F
(2r+2)(t)dt

= − 1

(2r + 2)!

(
F (2r+1)(1)− F (2r+1)(0)

)
+Rr,
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which completes the proof. □

Lemma 4.2. For r ≥ 0 and F ∈ C2r+2[0, 1], there is some ξ ∈ (0, 1) such that∫ 1

0

F (t)dt =
1

2
(F (0) + F (1))−

r∑
k=1

B2k

(2k)!

(
F (2k−1)(1)− F (2k−1)(0)

)
−R

where

R =
B2r+2

(2r + 2)!
F (2r+2)(ξ).

Proof. The last term plus the remainder term can be expressed as

− B2r+2

(2r + 2)!

(
F (2r+1)(1)− F (2r+1)(0)

)
+Rr

= − B2r+2

(2r + 2)!

∫ 1

0

F (2r+2)(t)dt+Rr = −R

where

R :=
1

(2r + 2)!

∫ 1

0

(B2r+2 −B2r+2(t))F
(2r+2)(t)dt

Using the upper bound on B2r(t) that was derived in the previous section, we note the
difference B2r− B2r(t) is of one sign in [0, 1], because

sgn (B2r) (B2r −B2r(t)) = |B2r| − sgn (B2r)B2r(t) ≥ |B2r| − |B2r(t)| ≥ 0.

So by the Mean Value Theorem, there is some ξ ∈ (0, 1) such that

R =
1

(2r + 2)!

∫ 1

0

(B2r+2 −B2r+2(t)) dtF
(2r+2)(ξ) =

B2r+2

(2r + 2)!
F (2r+2)(ξ).

□

Now to finish off our proof, we generalize our local case. Given an interval [a, b], we choose
n ≥ 1 and let h = (b− a)/n and xi = a+ ih, i = 0, 1, . . . , n.

Theorem 4.3. For r ≥ 0 and f ∈ C2r+2[a, b], there is some ξ ∈ (a, b) such that∫ b

a

f(x)dx = T (h)−
r∑

k=1

B2k

(2k)!
h2k
(
f (2k−1)(b)− f (2k−1)(a)

)
−R

where

T (h) =
h

2
(f(a) + f(b)) + h

n−1∑
i=1

f (xi)

and

R =
B2r+2

(2r + 2)!
(b− a)h2r+2f (2r+2)(ξ).

Corollary 4.4. For r ≥ 0 and f ∈ C2r+2[a, b],∫ b

a

f(x)dx = T (h)−
r∑

k=1

B2k

(2k)!
h2k
(
f (2k−1)(b)− f (2k−1)(a)

)
+O

(
h2r+2

)
,

as h → 0.
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Proof. Let F (t) = f (xi−1 + ht) , t ∈ [0, 1], i = 1, . . . , n. Then Lemma 2 gives∫ xi

xi−1

f(x)dx = h

∫ 1

0

F (t)dt =

h

2
(f (xi−1) + f (xi))−

r∑
k=1

B2k

(2k)!
h2k
(
f (2k−1) (xi−1)− f (2k−1) (xi)

)
−Ri

where

Ri =
B2r+2

(2r + 2)!
h2r+3f (2r+2) (ξi)

for some ξi ∈ (xi−1, xi). Summing this equation over i = 1, . . . , n yields the desired expansion
except that the remainder term is

R =
n∑

i=1

Ri =
B2r+2

(2r + 2)!
h2r+3

n∑
i=1

f (2r+2) (ξi) .

However, an application of the Mean Value Theorem gives

n∑
i=1

f (2r+2) (ξi) = nf (2r+2)(ξ)

for some ξ ∈ (a, b), and thus we are done. □

5. Applications

5.1. Euler’s Constant. Something interesting happens when we consider the formula for
f(x) = 1

x
. Let a = 1, b = n, and k = 1 in the formula. Then the expression becomes:

n∑
i=1

1

i
= log n+

1

2n
+

1

2
+

∫ n

1

P1(x)

x2
dx.

Now let

R(n) =
1

2n
+

1

2
+

∫ n

1

P1(x)

x2
dx.

Note that P1(x)’s absolute value is bounded by 1
2
and thus R(n) converges when n approaches

∞. Let us denote γ = limn→∞ R(n). This γ is actually known as Euler’s Constant [1]. A
good approximation is

γ = 0.5772156649015328606065120900....

It is unknown whether Euler’s Constant is rational or not and it is also believed that it could
be transcendental. The question is left as food for thought.

5.2. Stirling’s Formula. Another interesting application of the formula is the Stirling’s
approximation formula, which tells us that

Theorem 5.1.

n! = C(n)
√
n
(n
e

)n
[4]
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Proof. Let us take f(x) = log x, k = 0, a = 1, and b = n, where n is any positive integer. We
have

n∑
i=1

log i = (n log n− n+ 1) +
log n

2
+

∫ n

1

P1(t)

t
dt.

Simplifying and extracting the error term R(n), we get

log n! =
(
n+ 1

2

)
log n− (n− 1) +

∫ n

1
P1(t)

t
dt

R(n) = log n!−
(
n+ 1

2

)
log n+ n =

∫ n

1
P1(t)

t
dt+ 1

Integration by parts gives ∫ n

1

P1(t)

t
dt =

P2(t)

t

∣∣∣∣n
1

+

∫ n

1

P2(t)

t2
dt.

But P2(x) =
∑∞

i=1
2 cos(2iπx)

(2iπ)2
, so using that the absolute value of cosine function is at most 1

and the series
∑∞

i=1
1
i2

converges, we see that absolute value of P2(x) is bounded. Then the
integral above converges when n tends to infinity. Define

C = lim
n→∞

R(n).

We can obtain the exact value of C in the following way. We have

2 log(2 · 4 · · · 2n) = 2n log 2 + 2 log n!

= 2n log 2 + (2n+ 1) log n− 2n+ 2R(n)

= (2n+ 1) log 2n− 2n− log 2 + 2R(n).z

On the other hand,

log(2n+ 1)! =

(
2n+

3

2

)
log(2n+ 1)− (2n+ 1) +R(2n+ 1).

Subtracting the second expression from the first, we get

log
2 · 4 · · · 2n

1 · 3 · · · (2n+ 1)
= (2n+ 1) log

2n

2n+ 1
− 1

2
log(2n+ 1) + 1− log 2 + 2R(n)−R(2n+ 1)

= − log

(
1 +

1

2n

)2n+1

− 1

2
log(2n+ 1) + 1− log 2 + 2R(n)−R(2n+ 1).

Now let’s apply Walli’s product formula.

Theorem 5.2.

lim
n→∞

2 · 4 · · · 2n
1 · 3 · · · (2n+ 1)

1√
n
=

√
π.

Using the continuity of the logarithmic function in the formula above, we get

limn→∞ log 2·4···2n
1·3···(2n−1)

1√
2n+1

= − limn→∞ log
(
1 + 1

2n

)2n+1
+ 1 − log 2 + limn→∞(2R(n) −

R(2n+ 1))
which we can rewrite as

log
1√
2
lim
n→∞

2 · 4 · · · 2n
1 · 3 · · · (2n+ 1)

1√
n
= C − log 2.

Thus, we have C = log
√
2π. Substituting back into the remainder term above finishes our

proof. □
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5.3. Superconvergence of the Trapezoidal Rule.

Corollary 5.3. Suppose r ≥ 0 and f ∈ C2r+2[a, b]. If f (2k−1)(b) = f (2k−1)(a) for k =
1, . . . , r, then ∫ b

a

f(x)dx = T (h) +O
(
h2r+2

)
as h → 0.

This will be the case for any r ≥ 0 for functions f ∈ C∞(R) that are periodic with period
b− a. In fact, for some functions of this type, the trapezoidal rule is exact.

Theorem 5.4. Let [a, b] = [0, 2π] and let

f(x) =
n−1∑
k=0

ak cos(kx) +
n−1∑
k=1

bk sin(kx),

for any choice of ak and bk in R. Then T (h) is exact for f .

Proof. All we need to show is that T (h) is exact for f(x) = eikx, k = 0, 1, . . . , n − 1. The
integral of f is

∫ 2π

0

f(x)dx =

{
2π, k = 0,

0, k > 0

On the other hand, since f(0) = f(2π),

T (h) = h

(
1

2
(f(0) + f(2π)) +

n−1∑
j=1

f

(
2jπ

n

))

= h
n−1∑
j=0

f

(
2jπ

n

)
= h

n−1∑
j=0

e2jkiπ/n.

So, if k = 0,

T (h) = hn = 2π,

and if 1 ≤ k ≤ n− 1,

T (h) = h

n−1∑
j=0

(
e2kiπ/n

)j
= h

e2kiπ − 1

e2kiπ/n − 1
= 0,

and thus, we are done. [5]
□

5.4. Sum of p-th Powers. A neat application is a formula for sums of p-th powers.

Corollary 5.5. For p ≥ 1,

n−1∑
j=1

jp =
1

p+ 1
(Bp+1(n)−Bp+1) .
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The first few examples are as follows:

n−1∑
j=1

j =
1

2
n2 − 1

2
n,

n−1∑
j=1

j2 =
1

3
n3 − 1

2
n2 +

1

6
n,

n−1∑
j=1

j3 =
1

4
n4 − 1

2
n3 +

1

4
n2,

n−1∑
j=1

j4 =
1

5
n5 − 1

2
n4 +

1

3
n3 − 1

30
n,

Proof. Let f(x) = xp, p ≥ 1, and [a, b] = [0, n]. Then∫ b

a

f(x) =

∫ n

0

xpdx =
np+1

p+ 1
.

With h = 1, applying the trapezoidal rule for f on [0, n] gives

T (h) =
1

2
np +

n−1∑
j=1

jp.

Let r be such that p = 2r or p = 2r + 1. Then applying the Euler-Maclaurin Formula, we
get ∫ n

0

xpdx = T (h)−
r∑

k=1

B2k

(2k)!

p!

(p− 2k + 1)!
np−2k+1,

and therefore,
n−1∑
j=1

jp =
np+1

p+ 1
− 1

2
np +

1

p+ 1

r∑
k=1

(
p+ 1

2k

)
B2kn

p−2k+1

=
1

p+ 1

p∑
k=0

(
p+ 1

k

)
Bkn

p−k+1

=
1

p+ 1
(Bp+1(n)−Bp+1) .[6]

□
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